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ABSTRACT

WIESELQUIST, WILLIAM A. The Quasidiffusion Method for Transport Problems on
Unstructured Meshes. (Under the direction of Dmitriy Y. Anistratov.)

In this work, we develop a quasidiffusion (QD) method for solving radiation transport

problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-

node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes

from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new

low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the ef-

ficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) precon-

ditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order

form resembles convection-diffusion with a diffusion tensor, with the difference that the LOQD

equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD

equations is compared with three LOQD discretizations from literature.

We then present a conservative, short characteristics discretization based on subcell bal-

ances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various

limits (e.g. small cells and voids) and is second-order accurate in space. A linear representation

of the isotropic component of the scattering source based on face-average and cell-average scalar

fluxes is also proposed and shown to be effective in some problems.

In numerical tests, our QD method with linear scattering source representation shows some

advantages compared to other transport methods. We conclude with avenues for future research and

note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.



www.manaraa.com

The Quasidiffusion Method for Transport Problems on Unstructured Meshes

by

William A. Wieselquist

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Nuclear Engineering

Raleigh, North Carolina

2009

APPROVED BY:

Dr. Paul J. Turinsky Dr. Yousry Y. Azmy

Dr. Robin P. Gardner Dr. Semyon V. Tsynkov

Dr. Dmitriy Y. Anistratov
Chair of Advisory Committee



www.manaraa.com

DEDICATION

I would like to dedicate this to my family, both new and old, for their encouragement and support

during these years. In particular, my brother Andrew for always being there to distract me from

my problems and my best friend Elizabeth (whom I finally married in 2006) for always being there

to help me through them.

“Prediction is difficult, especially the future.”

- Niels Bohr

ii



www.manaraa.com

BIOGRAPHY

I, William Adam Wieselquist, was born in 1979 to Roy Walter Wieselquist and Katherine

Dashiell Rouse Wieselquist in Washington, D.C. I grew up in central North Carolina, with brother,

Andrew Greco, born in 1982, and sister, Grace Dashiell, born in 1985. I attended middle school and

high school in Winston-Salem, NC, with a brief stint at the North Carolina School of Science and

Mathematics in 2001 in Durham, NC. In 1998, I began college at North Carolina State University

in Raleigh, NC, graduating in 2002 with a B.S. in nuclear engineering, followed by an M.S. in 2005.

iii



www.manaraa.com

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Dmitriy Y. Anistratov, for the

years of guidance and patience as I have grown both as a scientist and as a person. I would also like

to thank other faculty in the nuclear engineering department at North Carolina State University,

with whom I have spent the last 10 years, namely R.M. Mayo, J.M. Doster, P.J. Turinsky, and R.P.

Gardner, from whom I have learned many things, both in and outside the classroom.

I would like to thank Richard M. Schultz for my first national lab experience at Idaho

National Laboratory, Michael Todosow for my experience with Brookhaven National Laboratory,

and finally Jae H. Chang for my experience at Los Alamos National Laboratory.

This work was partially supported by the Nuclear Engineering Education and Research

(NEER) Program of the US Department of Energy under the grant No. DE-FG07-03ID14496.

iv



www.manaraa.com

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 When is full transport warranted? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Why use quasidiffusion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Why consider unstructured meshes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Formulation of the Quasidiffusion Method . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1.1 Remarks about QD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Angle, Energy, and Time Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 History of Transport Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 QD as an Acceleration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1.1 The Transport Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1.2 Transport Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1.3 Linear Acceleration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1.4 Nonlinear Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1.5 Krylov Iterations for Transport Methods . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 QD as a Low-Order Transport Method . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2.1 PN Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2.2 Flux-Limited Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2.3 “Eddington Methods” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2.4 LOQD Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Applications of the QD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 History of QD Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 LOQD Spatial Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Transport Spatial Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2.1 Characteristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.2.2 Other Transport Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.2.3 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 Arbitrary Mesh Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7 Numerical Analysis Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.7.1 Numerical Convergence Analysis with Known Exact Solution . . . . . . . . . . . . . . 36
1.7.2 Numerical Convergence Analysis without Exact Solution . . . . . . . . . . . . . . . . 36

2 A FINITE VOLUME LOQD DISCRETIZATION . . . . . . . . . . . . . . . . . 38
2.1 General Finite Volume LOQD Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.1 Interface Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



www.manaraa.com

2.1.1.1 Example Unknown Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 Standard Interface Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.3 New Hanging-Node Interface Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.3.1 Strong Current / Weak Scalar Flux Interface Conditions . . . . . . . . . . . . . . . 44
2.1.3.2 Strong Scalar Flux / Weak Current Interface Conditions . . . . . . . . . . . . . . . 45
2.1.3.3 Strong Current / Weak Factor-Weighted Scalar Flux Interface Conditions . . . . . . 45
2.2 New Arbitrary Mesh LOQD FV Discretization . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1 Point Values vs. Average Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Discretization Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 LOQD Discretizations from Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3.1 GGK Discretization on Orthogonal Meshes . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3.2 GGK Discretization for Skewed Quadrilateral Meshes . . . . . . . . . . . . . . . . . 51
2.2.3.3 AK Discretization for Skewed Quadrilateral Meshes . . . . . . . . . . . . . . . . . . 53
2.2.4 Discretization Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Discontinuous Media Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.2 Discontinuous Source Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.3 Analytic Hump Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.4 Analytic Peak Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.3.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 QD FACTOR CALCULATION, SCATTERING SOURCE REPRESENTA-
TION, AND OTHER TRANSPORT-RELATED CONSIDERATIONS . . . . 90

3.1 A Short Characteristics Transport Discretization with Vertex Unknowns . . . . . . . . . 91
3.1.1 Diagonal Interpolation Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.1.2 Monotonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1.3 Determining QD Factors from Vertex-based Characteristics . . . . . . . . . . . . . . . 95
3.1.3.1 Face-average QD Factor Calculation from Vertex QD Factors . . . . . . . . . . . . . 96
3.1.3.2 Cell-average QD Factor Calculation from Vertex QD Factors . . . . . . . . . . . . . 96
3.1.4 Difficulties with Vertex-based Characteristics . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 A Short Characteristics Method with Subcell Balances . . . . . . . . . . . . . . . . . . . 99
3.2.1 Monotonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.2 Determining QD Factors from Subcell Balance Characteristics . . . . . . . . . . . . . 101
3.3 Error Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.4 Scattering Source Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.5 Difficulties with Characteristics through Arbitrary Cells . . . . . . . . . . . . . . . . . . 103

vi



www.manaraa.com

3.6 Transport Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6.1 Pure Attenuation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.6.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.6.2 Analytic Transport Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.6.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.6.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 QUASIDIFFUSION SOLVERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1 Two Well-structured LOQD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.1.1 Cell-based Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.1.2 Essential Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.1.3 Condition Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2 Scaling, Preconditioning, and Solving the LOQD System . . . . . . . . . . . . . . . . . . 129
4.2.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2.2 Iterative Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.3.1 ILU Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.3.2 Results for Fixed ILU Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2.3.3 Adaptive Recalculation Strategy for ILU Preconditioners . . . . . . . . . . . . . . . 137
4.3 QD Solver Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3.1 Transport Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3.2 LOQD Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.3.3 Storage Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1 Uniform External Source Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Diffusion Limit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3 Analytic Transport Test, Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4 Discontinuous Media/Source Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5 Duct Transport Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

vii



www.manaraa.com

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A Derivation of a Subcell Balance Characteristic Method2 . . . . . . . . . . . . . 193
A.1 Polynomial Exponential Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.1.1 1D Polynomial Exponential Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.1.2 2D Polynomial Exponential Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.2 Subcell Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
A.2.1 Transformation of Integral Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.2.2 Subcell Case 1, ∆s2 ≥ ∆s1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.2.2.1 1D Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.2.2.2 2D Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
A.2.2.3 2D Terms with x not too Small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
A.2.2.4 2D Terms with Small x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B Parabolic Interpolant with Monotonization . . . . . . . . . . . . . . . . . . . . . 208
B.1 Local Truncation Error in Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B.2 Local Truncation Error in Average Values . . . . . . . . . . . . . . . . . . . . . . . . . . 210
B.3 Monotonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

viii



www.manaraa.com

LIST OF FIGURES

Figure 1.1 Some arbitrary quadrilateral meshes. . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 1.2 QD Factor Angular Weight Functions, ΩαΩβ . . . . . . . . . . . . . . . . . . . . 9
Figure 1.3 Eigenvalues for TSA, DSA, and SI . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 1.4 Perturbation of vertices to construct randomized meshes. . . . . . . . . . . . . 34
Figure 1.5 Examples of randomized meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.1 Interfaces considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2.2 Discontinuous Media Test: Meshes. . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 2.3 Discontinuous Media Test: QD Factors and fine-mesh scalar flux solution. . . . 57
Figure 2.4 Discontinuous Media Test: WF scalar flux along centerline, left-refined . . . . . 58
Figure 2.5 Discontinuous Media Test: WC scalar flux along centerline, left-refined . . . . . 58
Figure 2.6 Discontinuous Media Test: WF scalar flux along centerline, right-refined . . . . 59
Figure 2.7 Discontinuous Media Test: WC scalar flux along centerline, right-refined . . . . 59
Figure 2.8 Discontinuous Media Test: WF scalar flux along centerline, center-refined . . . . 60
Figure 2.9 Discontinuous Media Test: WC scalar flux along centerline, center-refined . . . . 60
Figure 2.10 Discontinuous Media Test: Scalar flux along midplane . . . . . . . . . . . . . . . 61
Figure 2.11 Discontinuous Media Test: Scalar flux around peak . . . . . . . . . . . . . . . . 61
Figure 2.12 Discontinuous Source Test: Meshes . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 2.13 Discontinuous Source Test: GGK discretization scalar fluxes . . . . . . . . . . . 69
Figure 2.14 Discontinuous Source Test: AK discretization scalar fluxes . . . . . . . . . . . . 70
Figure 2.15 Discontinuous Source Test: JM discretization scalar fluxes . . . . . . . . . . . . 71
Figure 2.16 Analytic Hump Test: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 2.17 Analytic Hump Test: GGK scalar flux . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 2.18 Analytic Hump Test: AK scalar flux . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 2.19 Analytic Hump Test: JM scalar flux . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 2.20 Analytic Peak Test: Randomized hanging-node mesh . . . . . . . . . . . . . . . 81
Figure 2.21 Analytic Peak Test: scalar flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 2.22 Analytic Peak Test: GGK error distribution . . . . . . . . . . . . . . . . . . . . 85
Figure 2.23 Analytic Peak Test: AK error distribution . . . . . . . . . . . . . . . . . . . . . 86
Figure 2.24 Analytic Peak Test: JM error distribution . . . . . . . . . . . . . . . . . . . . . . 87

Figure 3.1 Parabolic Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 3.2 Vertex-based short characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 3.3 Delaunay triangulations of hanging node cells. . . . . . . . . . . . . . . . . . . . 97
Figure 3.4 Subcell balance short characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 3.5 Representative distribution of subcell widths for randomized meshes. . . . . . . 104
Figure 3.6 Pure Attenuation Test: Example mesh and scalar flux solution φ. . . . . . . . . 106
Figure 3.7 Pure Attenuation Test: QD Factors. . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 3.8 Pure Attenuation Test: SCV results. . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 3.9 Pure Attenuation Test: SCSB results. . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 3.10 Pure Attenuation Test: SCSB without monontization (SCSBnm) results. . . . . 110
Figure 3.11 Pure Attenuation Test: ESC results. . . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



www.manaraa.com

Figure 3.12 Pure Attenuation Test: bi-linear discontinous (BLD) results. . . . . . . . . . . . 112
Figure 3.13 Transport Analytic Test: ℓ2 error norm. . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 3.14 Transport Analytic Test: Error distribution . . . . . . . . . . . . . . . . . . . . . 118

Figure 4.1 Global cell-based structure of the LOQD sparse matrix . . . . . . . . . . . . . . 122
Figure 4.2 Local cell-based structure of the LOQD sparse matrix . . . . . . . . . . . . . . . 123
Figure 4.3 Equations and unknown ordering for a 1 × 1 cell-based system . . . . . . . . . . 125
Figure 4.4 Equations and unknown ordering for a 2 × 1 cell-based system . . . . . . . . . . 125
Figure 4.5 Global essential structure of the LOQD sparse matrix . . . . . . . . . . . . . . . 126
Figure 4.6 Condition numbers for LOQD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 4.7 Krylov solver residual vs. matrix-vector multiplies . . . . . . . . . . . . . . . . . 132
Figure 4.8 Krylov solver residual vs. normalized runtime . . . . . . . . . . . . . . . . . . . 132
Figure 4.9 Representative solver runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 5.1 Uniform External Source Test: QD factors . . . . . . . . . . . . . . . . . . . . . 144
Figure 5.2 Uniform External Source Test: Absolute error on orthogonal meshes . . . . . . . 145
Figure 5.3 Uniform External Source Test: Absolute error on randomized meshes . . . . . . 146
Figure 5.4 Uniform Source Test: Exx boundary behavior near corners with SCSB. . . . . . 147
Figure 5.5 Diffusion Limit Test: Comparison of LOQD and Diffusion solution . . . . . . . . 150
Figure 5.6 Analytic Transport Test, Revisited: ℓ2 norm error . . . . . . . . . . . . . . . . . 153
Figure 5.7 Transport Analytic Test, Revisited: high-order QD error distribution . . . . . . 155
Figure 5.8 Transport Analytic Test, Revisited: LOQD error distribution . . . . . . . . . . . 156
Figure 5.9 Discontinuous Media/Source Problem: Materials and refinement regions. . . . . 158
Figure 5.10 Discontinuous Media/Source Problem: Fine mesh solutions. . . . . . . . . . . . 159
Figure 5.11 Discontinuous Media/Source Problem: Cell-average scalar fluxes . . . . . . . . . 160
Figure 5.12 Discontinuous Media/Source Problem: Relative errors . . . . . . . . . . . . . . . 162
Figure 5.13 Discontinuous Media/Source Problem: Global comparison to BLD . . . . . . . . 163
Figure 5.14 Discontinuous Media/Source Problem: Comparison to BLD . . . . . . . . . . . . 164
Figure 5.15 Duct Transport Problem: Material distributions . . . . . . . . . . . . . . . . . . 165
Figure 5.16 Duct Transport Problem: QD Factors Eαβ . . . . . . . . . . . . . . . . . . . . . 166
Figure 5.17 Duct Transport Problem: Scalar flux contours on 128 × 64 meshes. . . . . . . . 169
Figure 5.18 Duct Transport Problem: Scalar flux on (coarse) 32 × 16 meshes. . . . . . . . . 170

Figure A.1 PM evaluation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure A.2 A quadrilateral divided into 3 subcells. . . . . . . . . . . . . . . . . . . . . . . . 198
Figure A.3 Small x expansion, ¯̄ψS∗∗∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

x



www.manaraa.com

LIST OF TABLES

Table 2.1 Rectangular Cell ~Gf Geometry Factors. . . . . . . . . . . . . . . . . . . . . . . . 54
Table 2.2 Rectangular Cell ~Hff ′ Geometry Factors. . . . . . . . . . . . . . . . . . . . . . . 54
Table 2.3 Discontinuous Source Test: Numerical convergence orders . . . . . . . . . . . . . 65
Table 2.4 Discontinuous Source Test: Results for φleft. . . . . . . . . . . . . . . . . . . . . . 66
Table 2.5 Discontinuous Source Test: Results for φright. . . . . . . . . . . . . . . . . . . . . 67
Table 2.6 Discontinuous Source Test: Results for Jur. . . . . . . . . . . . . . . . . . . . . . 68
Table 2.7 Analytic Hump Test: Integral error in the scalar flux . . . . . . . . . . . . . . . . 75
Table 2.8 Analytic Hump Test: Integral error in the exiting current . . . . . . . . . . . . . 79
Table 2.9 Analytic Hump Test: GGK error norms . . . . . . . . . . . . . . . . . . . . . . . 79
Table 2.10 Analytic Hump Test: AK error norms . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 2.11 Analytic Hump Test: JM error norms . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 2.12 Analytic Peak Test: GGK ℓ2 error norm . . . . . . . . . . . . . . . . . . . . . . . 83
Table 2.13 Analytic Peak Test: AK ℓ2 error norm . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 2.14 Analytic Peak Test: JM ℓ2 error norm . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 2.15 Analytic Peak Test: GGK ℓ2 error norm on hanging-node meshes . . . . . . . . . 84
Table 2.16 Analytic Peak Test: AK ℓ2 error norm on hanging-node meshes . . . . . . . . . . 84
Table 2.17 Analytic Peak Test: JM ℓ2 error norm on hanging-node meshes . . . . . . . . . . 84

Table 3.1 Analytic Transport Test: ℓ2 error norm. . . . . . . . . . . . . . . . . . . . . . . . 116

Table 4.1 ILUD preconditioning/scaling results for Test 1: σt = 1, σs = 0.9. . . . . . . . . . 136
Table 4.2 ILUT preconditioning/scaling results for Test 1: σt = 1, σs = 0.9. . . . . . . . . . 136
Table 4.3 ILUD preconditioning/scaling results for Test 2: σt = 10, σs = 0. . . . . . . . . . 136
Table 4.4 ILUT preconditioning/scaling results for Test 2: σt = 10, σs = 0. . . . . . . . . . 137

Table 5.1 Uniform External Source Test: Ortho. mesh convergence orders . . . . . . . . . . 144
Table 5.2 Uniform External Source Test: Rand. mesh convergence orders . . . . . . . . . . 145
Table 5.3 Diffusion Limit Test: φD of the reference diffusion . . . . . . . . . . . . . . . . . . 148
Table 5.4 Diffusion Limit Test: φD of the high-order QD (SCSB) discretization. . . . . . . 149
Table 5.5 Diffusion Limit Test: φD of the LOQD (JM) discretization. . . . . . . . . . . . . 149
Table 5.6 Diffusion Limit Test: Number of QD iterations. . . . . . . . . . . . . . . . . . . . 149
Table 5.7 Diffusion Limit Test: Randomization error . . . . . . . . . . . . . . . . . . . . . . 151
Table 5.8 Analytic Transport Test, Revisited: High-order QD with flat scattering . . . . . . 154
Table 5.9 Analytic Transport Test, Revisited: High-order QD with linear scattering . . . . 154
Table 5.10 Analytic Transport Test, Revisited: LOQD with flat scattering . . . . . . . . . . 154
Table 5.11 Analytic Transport Test, Revisited: LOQD with linear scattering . . . . . . . . . 154
Table 5.12 Discontinuous Media/Source Problem: Source φ for 1-level meshes . . . . . . . . 161
Table 5.13 Discontinuous Media/Source Problem: Source φ for 2-level meshes . . . . . . . . 161
Table 5.14 Sink φ for 1-level meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 5.15 Sink φ for 2-level meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 5.16 Duct Transport Problem: QD block region-average φ for 1-level meshes . . . . . 167
Table 5.17 Duct Transport Problem: QD block region-average φ for 2-level meshes . . . . . 168

xi



www.manaraa.com

Table 5.18 Duct Transport Problem: SCSB and BLD block region-average scalar flux. . . . . 168
Table 5.19 Duct Transport Problem: QD exiting flow rate for single-level meshes. . . . . . . 168
Table 5.20 Duct Transport Problem: QD exiting flow rate for two-level meshes. . . . . . . . 168
Table 5.21 Duct Transport Problem: SCSB exiting flow rate. . . . . . . . . . . . . . . . . . . 168

xii



www.manaraa.com

Chapter 1

INTRODUCTION

In this research we present a new method for solving radiation transport problems using

the quasidiffusion (QD) method [4] on arbitrary spatial meshes of quadrilaterals in Cartesian XY

geometry. In this introduction, we discuss the motivation for radiation transport simulations,

give some necessary background information on radiation transport while reviewing the relevant

literature, and then briefly outline our advancements.

1.1 Motivation

Simulation of physics on digital computers has become an integral part of the design

process, especially in the preliminary stages (e.g. scoping studies), when the numerous degrees

of freedom make performing actual experiments prohibitively expensive. Simulation of radiation

transport is no exception, playing a vital role in many natural and artificial processes. Radiation

transport simulation is a valuable tool in: nuclear reactor design, radiation safety, astrophysics,

medical imaging, radiotherapy, fuel transport/storage, shielding design, oil exploration, fire simu-

1
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lation, combustion engineering, and electronics.

1.1.1 When is full transport warranted?

There are many physical processes in which modelling radiation and it’s interaction with

matter is simple. For example, consider photon interactions in a system at local thermodynamic

equilibrium (LTE). In LTE, the specific radiation intensity (so-called angular flux ψ) is a simple

function of material temperature, ψ ∝ T 4 [28]. As another example, consider neutron attenuation

in a purely absorbing shield, where the mean radiation intensity (so-called scalar flux φ) obeys

an exponential decay law, φ(x) = φ0e
−σax, where σa is the macroscopic absorption cross-section.

As a final example, consider nuclear reactors where the largeness of the reactor system, static

geometry, and homogenization methods allow the system to be modelled using a few-group diffusion

approximation.

However, it is easy to think of situations where the above assumptions are not valid,

and thus the approximation most certainly isn’t—e.g. a system which has not reached LTE, a

shielding problem in highly scattering media, or a small modular reactor. In these cases and many

more, one must resort to transport methods capable of capturing all physics of radiation transport.

Traditionally these “full” transport methods are categorized as either deterministic or stochastic.

In this work, we concern ourselves with deterministic transport methods, 1 which center

on the discretization and solution of the linearized Boltzmann transport equation [5], an integro-

differential equation that is integral in angle (~Ω) and energy (E) and differential in space (~r) and

1Specifically, we concern ourselves with the first-order form of the transport equation as in Eq. (1.1). Second-order
forms exist and have the advantage of being self-adjoint, therefore amenable to SPD discretizations and fast iterative
solution via conjugate gradients (CG). They also have an advantage in developing consistently discretized synthetic
acceleration equations (see Sec.1.3.1) because the second-order forms have a natural similarity to diffusion. However,
second-forms suffer from problems with void regions where σt → 0 and cannot take advantage of the efficient transport
sweep [88], as described in Sec.1.3.1.1.

2
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time (t),

1

v

∂ψ

∂t
+ ~Ω · ~∇ψ + σtψ =

∫

4π
dΩ′

∫

∞

0
dE′σs(~Ω

′ → ~Ω, E′ → E)ψ(~r, ~Ω′, E′, t) +Qext. (1.1)

The primary unknown is the so-called “angular flux”, ψ(~r, ~Ω, E, t), a convenient grouping of particle

speed v(E) and particle distribution function n(~r, ~Ω, E, t), i.e. ψ = v n. The total interaction cross

section is σt(~r,E, t) and double differential scattering cross section is σs(~r, ~Ω
′ → ~Ω, E′ → E, t). The

direction of particle travel is the unit vector ~Ω = (Ωx,Ωy,Ωz), with Ωx = cos γ sin θ, Ωy = sin γ sin θ,

and Ωz = cos θ, where γ ∈ [0, 2π] is the azimuthal angle and θ ∈ [−π/2, π/2] is the polar angle.

Integration over an angular dependent quantity f(~Ω) is represented in the shorthand,

∫

4π
dΩ f(~Ω) =

∫ 2π

0
dγ

∫ π/2

−π/2
sin θdθf(θ, γ). (1.2)

Solving deterministic transport problems is difficult because of the high dimensionality of the

problem (7D in the most general case), and because the particle transport phenomenon may exhibit

different behaviors depending on properties of the physical system. To paraphrase from an excellent

2002 radiation transport review paper [88], “in void-like regions of a physical system, the transport

equation behaves like a hyperbolic wave equation; in highly scattering regions it behaves like an

elliptic (steady-state) or parabolic (time-dependent) diffusion equation; and in regions with highly

forward-peaked scattering, it can behave like a parabolic equation.” It is extremely difficult to find

discretization methods that are accurate over this wide range of behavior.

1.1.2 Why use quasidiffusion?

The quasidiffusion method (QD), developed by Gold‘in in 1964 [4], is a method to solve

Eq. (1.1), the transport equation. QD utilizes a special “low-order problem” (low-order in the sense

3
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of angular dependence) which one derives by integrating the transport equation over all angle using

Eq. (1.2), with respect to f(~Ω) = 1, Ωx, Ωy, and Ωz. Quasidiffusion has a number of qualities which

will be illuminated in subsequent sections. In brief, those qualities are:

• versatility because the high-order (transport) and low-order quasidiffusion discretizations

may be chosen independently of one another,

• acceleration of transport iterations in highly-scattering media and for nonlinear problems,

and

• simplified coupling to other physics.

1.1.3 Why consider unstructured meshes?

(a) logically rectangular (b) hanging-node

Figure 1.1: Some arbitrary quadrilateral meshes.

Deterministic transport methods require a discretization of Eq. (1.1) in space, energy,

angle, and time for the most general problem. In energy, angle, and time, there are standard

and accepted discretizations which we shall assume so that we may focus on developing spatial

4
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discretizations of the transport equation on arbitrary meshes. Typical reasons for solving transport

problems on arbitrary meshes are to

• resolve curved surfaces and material interfaces with more accuracy,

• allow adaptation of meshes to minimize some aspects of the error, and

• increase generality, which is useful in multi-physics applications where the transport

method cannot dictate the mesh.

We focus on arbitrary quadrilateral meshes as in Fig. 1.1. Both types of meshes have useful applica-

tions. Hanging-node meshes commonly arise in adaptive mesh refinement (AMR) applications [35],

and although we do not perform such adaptation of the mesh to minimize the error (usually with

respect to some local norm), our methods may be used on such meshes. Logically rectangular

meshes are our other target mesh and can be described by perturbations of an orthogonal (rect-

angular) mesh that do not create any new cells (or concave cells.) These meshes are common in

radiation hydrodynamics with a Lagrangian reference frame. Increased generality is also useful in

radiation hydrodynamics because of it’s multi-physics nature. Hydrodynamics dictates the mesh,

and although the radiation transport could use a different mesh and map the necessary informa-

tion to and from the hydrodynamics mesh, a more efficient solution is probably to have a transport

component that can compute directly on the hydrodynamics mesh, and thus the multi-physics sim-

ulation need maintain only one spatial mesh. Our methods are also valid on arbitrary quadrilateral

meshes created from

1. triangular meshes by dividing each triangle into 3 quadrilaterals and/or merging 2 neighboring

triangles into one quadrilateral or

5
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2. polygonal meshes by dividing each N -sided polygon into N quadrilaterals.

1.2 Preliminaries

In this section, we will present the Quasidiffusion (QD) equations in continuous space and

then remark on aspects of QD for the reader that is not familiar with the method.

1.2.1 Formulation of the Quasidiffusion Method

The Quasidiffusion (QD) method [4] for steady-state one-group transport problems with

isotropic scattering2 and source in Cartesian geometry is defined by the following system of equa-

tions.

Transport Equation

~Ω · ~∇ψ + σtψ =
σs
4π
φ+

1

4π
qext in domain G, (1.3a)

ψ = ψIN for incoming directions ~Ω · ~n < 0 on boundary ∂G, (1.3b)

Low-Order Quasidiffusion (LOQD) Equations

~∇ · ~J + (σt − σs)φ = qext in domain G, (1.4a)

∑

β=x,y,z

∂

∂β
(φEαβ) + σtJα = 0 for α = x, y, z in domain G, (1.4b)

~n · ~J + JIN = C(φ− φIN ) on boundary ∂G, (1.4c)

where G is the domain of the problem, ∂G is the boundary surface of G, ~n is the outward normal to

∂G, φ =
∫

4π ψ dΩ is the scalar flux, ~J =
∫

4π
~Ωψ dΩ is the net current, JIN =

∫

~n·~Ω<0 |~n · ~Ω|ψIN dΩ

2We only assume isotropic scattering for simplicity—the QD method is effective in problems with highly anisotropic
scattering as well [65].

6
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is the incoming partial current, φIN =
∫

~n·~Ω<0 ψIN dΩ, is the incoming partial scalar flux, Eαβ is

the αβ-th component of the QD (aka “Eddington”) tensor, and C is the boundary QD factor. The

nonlinear Eαβ and C factors of the angular flux ψ are given as

Eαβ [ψ] =

∫

4π ΩαΩβψ dΩ
∫

4π ψ dΩ
, (1.5a)

C[ψ] =

∫

~n·~Ω>0 ~n · ~Ω ψ dΩ
∫

~n·~Ω>0 ψ dΩ
. (1.5b)

The iteration scheme used to solve the QD equations of Eq. (1.3) and Eq. (1.4) is shown in Algorithm

1.

Algorithm 1: Quasidiffusion Iteration Process.

while Convergence criteria not met do

if first iteration then

Assume diffusion approximation for low-order factors: Eαβ = 1

3
δαβ and C = 1

2
.

else

Calculate low-order factors Eαβ [ψ] and C[ψ] via Eq. (1.5).

end

Solve the LOQD equations of Eq. (1.4) for φ and ~J .

Update the RHS scattering source of the transport equation (e.g. 1

4π
σsφ.)

Solve the transport equation of Eq. (1.3) for ψ.

end

1.2.1.1 Remarks about QD

The QD Factors, Eαβ [ψ] and C[ψ] depend only weakly on the angular flux ψ, possessing

a small Frechet derivative [47]. This leads to fast convergence for a wide range of linear (and

nonlinear) transport problems. The LOQD equations of Eq. (1.4) are a non-symmetric, elliptic

7
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system with a tensor divergence term. It is convenient to write Eq. (1.4b) in tensor form,

~∇ · (φE) + σt ~J = 0. (1.6)

Note that the QD tensor E appears with the scalar flux φ under the divergence operator. (This

makes discretization of the LOQD equations much more difficult than if E was outside.) The QD

(aka Eddington) tensor is a symmetric, positive definite, rank-2 tensor that may be visualized as

the matrix,

E =

















Exx Exy Exz

Exy Eyy Eyz

Exz Eyz Ezz

















. (1.7)

Note in 2D, only the components Exx, Eyy, Exy are needed. The ΩαΩβ weights used to construct

E are shown in Fig. 1.2. Based on the fact that ~Ω is a unit vector, the QD tensor E has diagonal

components (α = β) that satisfy Eαα ∈ [0, 1] and off-diagonal components (α 6= β) that satisfy

Eαβ ∈ [−1
2 ,

1
2 ].

As a PDE, the steady-state LOQD equations of Eq. (1.4) have similar terms to steady-

state convection-diffusion equations [90]. When solving the LOQD equations, we prefer to keep

Eq. (1.4a) and Eq. (1.4b) separate and not eliminate the current ~J by substituting Eq. (1.4b) into

the balance equation Eq. (1.4a). However, in order to compare LOQD to convection-diffusion, let

us do just that, which yields

− 1

σt

(

Exx
∂2φ

∂x2
+ 2Exy

∂2φ

∂x∂y
+ Eyy

∂2φ

∂y2

)

+~b · ~∇φ+ c φ = qext, (1.8a)

8
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(a) Ω
2
x (b) Ω

2
y

(c) Ω
2
z (d) ΩxΩy

(e) ΩxΩz (f) ΩyΩz

Figure 1.2: QD Factor Angular Weight Functions, ΩαΩβ

9



www.manaraa.com

with

~b = − 1

σt









2∂Exx

∂x + 2
∂Exy

∂x

2
∂Exy

∂y + 2
∂Eyy

∂y









, (1.8b)

c = − 1

σt

(

∂2Exx
∂x2

+ 2
∂2Exy
∂x∂y

+
∂2Eyy
∂y2

)

+ σa, (1.8c)

where we have assumed 2D and constant total cross section σt. Compared to the second-order

form of the LOQD equations in Eq. (1.8), the model convection-diffusion equation in [90] contains

much simpler second-order terms, D∂2φ/∂x2 + D∂2φ/∂y2. The second-order term in the LOQD

equations more closely resembles that found in tensor diffusion which has ~J ∝ D~∇φ, where D is a

symmetric, positive definite diffusion tensor [97]. However, because the diffusion tensor, D, appears

outside the derivative term, QD has second-order cross-terms, ∂2Exy/∂x∂y, that tensor diffusion

does not.

1.2.2 Angle, Energy, and Time Discretizations

The QD equations were presented in Eq. (1.3) and Eq. (1.4) for the steady-state, single-

group (monoenergetic) case. A discretization in angle and space must still be specified. To discretize

the angular domain, we use the discrete ordinates (SN ) approximation3, which defines a quadrature

rule to evaluate integrals over angle as in Eq. (1.2),

∫

4π
dΩ f(~Ω) ≈

NM
∑

m=1

wm f(~Ωm) , (1.9)

where the set of directions (or ordinates) is {~Ωm|m = 1, ..., NM}, with corresponding weights,

{wm|m = 1, ..., NM}.
3See [30, 79] and references therein for more information on the SN approximation and [107] for an angular

truncation error analysis.
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The spatial discretization of the QD equations is a focus of this work. However, the spatial

discretization we develop is not restricted to the steady-state single-group case. Extending a given

spatial discretization from the one-group case to the multi-group case is generally straightforward

[30]. To solve time-dependent equations, simple discretizations in time are fairly straightforward

to implement as a sequence of “steady-state” calculations.

1.3 History of Transport Methods

Here we will discuss the quasidiffusion method as it relates to other transport methods.

This discussion is centered about two features of Quasidiffusion.

1. The LOQD equations may be used to accelerate convergence of transport iterations. The

attitude is that an iterative solution to Eq. (1.3) is desired and the inclusion of the LOQD

equations Eq. (1.4) speeds convergence of the iterations.

2. The LOQD representation of the transport problem facilitates coupling to other physics. The

attitude here is remarkably different in that Eq. (1.4) is treated as the central equation, where

the QD factor data is updated periodically by some means (e.g. Eq. (1.3)).

Depending on the application, one may find particular advantage in one of the features above.

11



www.manaraa.com

1.3.1 QD as an Acceleration Method

In order to discuss QD as an acceleration method we introduce the following operator

form of the transport equation of Eq. (1.3)

Lψ =
σs
4π
φ+

1

4π
qext in domain G, (1.10a)

ℓψ = ψIN on boundary ∂G, (1.10b)

where the transport operator consists of interior operator L and boundary operator ℓ. Utilizing

the SN approximation we get (for the interior),

Lmψm =
σs
4π
φ+

1

4π
qext (1.11)

to solve for each direction in the quadrature set, ~Ωm, where the scalar flux is given by approxi-

mate integration via quadrature set φ =
∑

mwmψm. In practice, Eq. (1.11) is solved iteratively

by assuming scattering source σsφ from a previous iteration or from the solution of acceleration

equations.

1.3.1.1 The Transport Sweep

The major advantage of using the first-order form of the transport equation Eq. (1.1) and

the discrete ordinates approximation4 is that the Lm operator is easily inverted. On orthogonal

meshes in Cartesian geometry, the Lm operator of Eq. (1.11) under most discretizations is triangular

and may be inverted by simple backsubstitution, starting with known boundary conditions. This

can be visualized as starting from boundary conditions and moving in the direction ~Ωm, visiting

4In Cartesian geometry, the discrete ordinates transport operator Lm is identical to the operator for the method
of characteristics. In curvilinear geometry, where ~Ω · ~∇ψ has angular derivatives, the characteristics and discrete
ordinates treatments result in different Lm operators.
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each cell in a sequence such that upwind information is known. This way of inverting Lm for all

m is known as a transport sweep. On unstructured meshes, the proper ordering of cells for the

transport sweep is more complicated. One must consider the dependency graph of cells to their

upwind neighbors, as dictated by which faces are incoming and outgoing for a given direction. On

unstructured meshes in 2D, the dependency graph is known to be a Directed Acyclic Graph (DAG)

and there are simple algorithms for traversing the DAG using stacks [60,84]. In graph terminology,

cells should be visited in the postorder (or reverse order) of the depth-first traversal of the DAG. On

unstructured meshes in 3D, the dependency graph may be cyclic, which indicates a non-triangular

structure for Lm. With cycles and in parallel environments, more complicated sweep algorithms

are used [84].

1.3.1.2 Transport Iterations

The simplest way to solve Eq. (1.11) is to use the transport sweep for the action of L−1
m

and source iterations (SI) for the scattering,

ψk+1/2
m = L−1

m

(

σs
4π
φk +

1

4π
qext

)

for each direction m, (1.12)

φk+1 =
∑

m

wmψ
k+1/2
m ,

where k is the index for transport iterations. (The reason for the k+1/2 indices will become apparent

later when acceleration methods are introduced.) The well-known drawback of SI (aka Richardson

iterations) is that the iteration process converges very slowly for highly scattering problems. The

spectral radius5 of SI is determined from Fourier analysis in an infinite homogeneous medium to be

5The spectral radius ρ is the largest absolute value of eigenvalue ω over all wave numbers λ,

ρ = max
−∞≤λ≤∞

|ω(λ)|. (1.13)
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ρSI = c, where the scattering ratio, c
def
= σs

σt
. Using SI leads to an unacceptable number of transport

iterations in many practical problems, for example, in nuclear reactor models with large thermal

neutron energy groups. This leads us to methods for accelerating transport iterations.

Acceleration methods solve the following system of equations,

ψk+1/2
m = L−1

m

(

σs
4π
φk +

1

4π
qext

)

for each direction m, (1.14a)

φk+1 = F−1
k+1/2f

k+1/2, (1.14b)

where Fk+1/2 is the operator of the acceleration equations, φk+1 is the accelerated flux, and fk+1/2

is the RHS of the acceleration equations. Both F and f may depend on the solution ψ
k+1/2
m .

In acceleration methods, Eq. (1.14a) is the high-order problem and Eq. (1.14b) is the low-order

problem. The terms high-order and low-order refer to the angular dimensionality of the problem,

not for example, the spatial order of accuracy for the method. Similar naming conventions have

been adopted with QD: the transport equation of Eq. (1.3) is the high-order problem and the

LOQD equations of Eq. (1.4) is the low-order problem. In order to proceed with our review of

acceleration methods, let us divide acceleration methods into two categories: linear and nonlinear

acceleration [47].
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1.3.1.3 Linear Acceleration Methods

In the case of linear or synthetic acceleration methods, the accelerated flux φk+1 is an

additive correction to the unaccelerated flux φk+1/2,

ψk+1/2
m = L−1

m

(

σs
4π
φk +

1

4π
qext

)

for each direction m, (1.15a)

φk+1/2 =
∑

m

wmψ
k+1/2
m ,

∆φk+1 = F−1
k+1/2f

k+1/2, (1.15b)

φk+1 = φk+1/2 + ∆φk+1, (1.15c)

where the correction satisfies ∆φk+1 → 0 as the solution converges. The downside of acceleration

via this type of correction is that in order to have stability, the low-order system Eq. (1.15b) and

high-order system Eq. (1.15a) must be consistently discretized, in some sense [33,42,70]. Synthetic

acceleration methods may be interpretted as preconditioned Richardson iterations [88] with the

operator F of Eq. (1.15b) related to the preconditioner.

The most popular synthetic acceleration methods are Diffusion Synthetic Acceleration

(DSA) [22,23,29,59] and Transport Synthetic Acceleration (TSA) [62].

In DSA, the low-order problem is pure diffusion and effectively accelerates the diffusive

(λ = 0) mode of the solution, which dominates in many problems with high scattering. With DSA,

the spectral radius of transport iterations is substantially reduced from that of source iterations,

ρDSA ≈ 0.22c. Developing consistent discretizations for DSA with efficient solvers is difficult,

especially in multi-dimensional geometry. As an example, consider that the first stable and effective

DSA method in 2D Cartesian geometry is due to Wareing, et. al. in 1991 [41], where they used a

bi-linear discontinuous (BLD) finite element discretization on rectangles for the transport and DSA
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Figure 1.3: Comparison of eigenvalues ω versus wave number λ for TSA (with β = 1/3), DSA, and
SI with scattering ratio c = 1. Figure taken from [88].

equations. However, an efficient solver was not available until 1993, when multigrid techniques were

applied to the DSA equations by Morel, et. al. [55].

With TSA, a transport equation with a reduced order quadrature set (usually S2) and

modified cross sections (via free parameter β ∈ [0, 1]) is used to accelerate the transport iterations.

Because the low-order equation of TSA is the transport equation there is no issue with a consistent

discretization. The TSA equations are solved iteratively, just like the transport equation, so the

transport iterations have “inner iterations” inside each acceleration update. Typically, the TSA

equations are not iterated to convergence but to some maximum number of iterations M [88].
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Although TSA may lead to large reduction in spectral radius over SI, the optimal values for free

parameter β and maximum number of “inner iterations” M are problem-dependent. Also, for

optically thick problems with very small absorption, the spectral radius of the TSA scheme (with

fixed M) still approaches unity [88], shown in Fig. 1.3 with DSA for comparison.

Also worth mentioning are the adjacent-cell preconditioner (AP) methods of Azmy [70,87]

which address consistency by matching spectral properties of the high-order and low-order problems.

1.3.1.4 Nonlinear Acceleration

As an accelerator, QD behaves similarly to DSA in diffusive problems, accelerating the

diffusive mode of the transport solution with ρQD ≈ 0.22c. However, unlike DSA, QD is 1) nonlin-

ear, 2) stable under independent discretizations of the low-order and high-order problems, 3) the

low-order problem is not an approximate transport method, 6 and 4) results in a multiplicative

correction to the high-order problem [33,47],

ψk+1/2
m = L−1

m

(

σs
4π
φk +

1

4π
qext

)

for each direction m, (1.16a)

φk+1 = F−1
k+1/2[ψ

k+1/2]fk+1/2. (1.16b)

The multiplicative correction described by Eq. (1.16a) is actually common to a class of methods

called nonlinear projective iteration (NPI) methods [24,47], also known as projected discrete ordi-

nates (PDO) methods [33]. Just like QD, the NPI methods are defined by a system of nonlinearly

coupled high-order and low-order problems that are equivalent to the original, linear transport

problem of Eq. (1.11). Also just like QD, the equations of NPI methods are closed by a defining set

6In DSA, the low-order problem is a diffusion equation and only under certain asymptotic conditions is a solution
to the transport equation. In QD, the low-order problem (the LOQD equations) is capable of representing the
transport equation exactly.
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of linear-fractional factors and usually converge fast because the factors are weakly dependent on

the solution, as evidenced by a small Frechet derivative. The acceleration effectiveness of QD can

also be explained by interpretting QD as a 2-level angular multigrid for the transport equation [39].

All NPI methods have the versatility of allowing independent discretizations of the high-order and

low-order problems. Other nonlinear acceleration methods are discussed in [47,78,88].

One interesting feature of independent discretizations is that the coverged high-order and

low-order solutions are not necessarily equal,

lim
k→∞

(φ
k+1/2
h − φkh) = O(hp),

differing by discretization-dependent truncation error, O(hp), where h is some measure of the size

(length) of a spatial cell and p satisfies p > 0 for a consistent method. Naturally, we only work with

consistent methods for which the difference between converged high-order and low-order solutions

is guaranteed to approach zero as the mesh is refined (h→ 0).

1.3.1.5 Krylov Iterations for Transport Methods

Another linear method for acceleration of transport iterations deserves its own category

as it is not based on Richardson iterations but on Krylov iterations. In 2004, Warsa, et. al.

showed that DSA can break down in highly heterogeneous media for discontinuous finite element

(DFEM) discretizations of the transport equation, but by using Krylov methods with diffusion

preconditioning, robustness was recovered [96]. In order to be amenable to Krylov iteration, the
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transport equation in Eq. (1.11) may be cast in the following form 7,

(

I −DL−1
m

σs
4π

)

φ = DL−1
m

(

1

4π
qext

)

, (1.17)

where I is the identity operator and D is the so-called discrete-to-moment operator, describing

how angular fluxes ψm are converted to scalar fluxes φ, i.e. the quadrature integration. The

linear system Aφ = b may be solved iteratively via Krylov methods [91], where iteration matrix

A = (I−DL−1
m

σs

4π ) and the RHS is b = DL−1
m

(

1
4π qext

)

, which may be interpretted as the uncollided

flux. Note, the efficient transport sweep is still utilized when computing the action of A, as needed

by a particular Krylov method. In [96,102], GMRES is used to solve Eq. (1.17) with a DFEM trans-

port discretization, preconditioned via a partially consistent (continuous FEM) diffusion equation.

Additionally, a discontinuous update procedure is used to map the continuous unknowns of the

diffusion preconditioner to the discontinuous unknowns of the DFEM transport discretization.

For practical applications, one disadvantage of Krylov methods is that, because it is a

linear method, one has trouble applying nonlinear negative-flux fixup techniques [109]. (In our

notation, negative flux fixups result in a nonlinear transport sweep L−1
m → L−1

m [ψm)].) With many

discretizations, including DFEM, negative fluxes may be calculated in cells that are many mean-free

paths thick (σth ≫ 1) or near interfaces between unlike materials. Negative fluxes are, of course,

physically not meaningful but may also lead to instabilities when the transport solution is coupled

to other physics [109]. Introducing negative-flux fixups into Krylov iterations is difficult for two

reasons: 1) introducing any non-linearity into the system destroys the theory of convergence and

2) a negative flux-fixup (even a linear one) must be applied to a physical quantity (e.g. the angular

7We show the iterative system for the scalar flux φ, but in general one can use the hybrid methods of Morel [36]
to solve for any number of moments (in the spherical harmonic sense) of the angular flux or solve for the angular flux
itself ψm.
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flux ψ), not to subspace vectors specific to the Krylov method.

1.3.2 QD as a Low-Order Transport Method

For applications with time-dependent, highly non-linear, coupled physics equations (e.g.

radiative transfer and radiation hydrodynamics8 ), the transport method must be relatively cheap

and robust, which has led researchers to seek approximations which allow one to solve a set of

PDEs of reduced complexity and cost compared to the full transport equation of Eq. (1.1). An-

other strong motivation for low-order transport methods is that in many applications, the most

important radiation-related quantities are the particle/media reaction rates and the particle flow

rates, proportional to the scalar flux φ and current ~J , respectively. The complete distribution of

particles in space and angle described by the angular flux ψ is unnecessary.

1.3.2.1 PN Equations

The PN equations are derived by taking spherical harmonics moments of the transport

equation Eq. (1.1) [30]. They have an advantage over SN methods in not producing ray effects as

all angular basis functions are continuous over the entire unit sphere. However, imposing transport

boundary conditions, ψIN , for incoming directions, is difficult with PN methods, especially in multi-

dimensional geometry. The PN equations also need closure as the first N equations will contain

N + 1 moments—usually the highest order moment, ΦN+1, is assumed constant, i.e. all derivative

terms with ΦN+1 are zero [30]. Of the PN family, the P1 equations receive the most attention

as low-order transport methods—without time-dependence the P1 equations are identical to the

diffusion equations [92].

8An excellent text for introductory radiation hydrodynamics and current methodologies is [98].
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1.3.2.2 Flux-Limited Diffusion

A physical law can be derived that says | ~J | ≤ φ, that is the magnitude of the net current

| ~J | must be less than the scalar flux φ [15]. In astrophysics (and most physics for that matter),

the quantities ~J and φ are called the “flux” and “intensity”, respectively, which we will use for the

remainder of this flux-limited diffusion section. Conversely, | ~J | > φ is a violation of particle conser-

vation9 but may arise quite easily in a diffusion discretization where ~J = − 1
3σt

~∇φ. The technique

of “flux-limiting” was created to force diffusion (or P1) discretizations to conserve particles.

1.3.2.3 “Eddington Methods”

There is a host of low-order transport methods with “Eddington” somewhere in the name.

They all introduce a closure relation into the system of equations formed by taking the 0th and

1st angular moments of the transport equation, i.e. the P1 equations. In our QD notation from

Eq. (1.6), the “Eddington Approximation” [1] is the approximation E ≈ 1
3 I, where I is the identity

tensor— it is simply the diffusion approximation. An extension to the Eddington approximation

is presented in [10] in which the extended equations closely resemble the LOQD equations, but

approximate closures are formulated which do not rely on a high-order transport sweep. The

“Variable Eddington Factor” (VEF) methods follow naturally, where new approximate closures

are presented that are allowed to vary, E(~r) ≈ E(η) [16], where η is the ratio of magnitude of

the flux to the intensity, η(~r) = | ~J(~r)|/φ(~r). Thus the VEF equations are a closed system for ~J

and φ. The closure relations, E(η), are asymptotically correct as η → 0 (isotropic) and η → 1

(pure streaming) but intermediate values differ significantly by choice of factor [82]. For example,

9In the flux-limiter literature, the notation ~F is used for the flux, ~F =
R

4π
dΩ ~Ωψ, and E for the energy density,

E = 1

c

R

4π
dΩψ, where c is the speed of light. Related to our notation, ~F = ~J and φ = E/c. So in this notation, the

“flux limit” is |~F | ≤ cE, and the violation is viewed as allowing particles to move faster than the speed of light c.
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consider the Minerbo closure [16], derived from statistical considerations in 1D,

Exx = 1 − 2η

Z
,

where Z is a parameter related to η by

η = cothZ − 1

Z
.

Eddington factors E(η) may also be cast as flux limiters, as described in [27], where it

is shown that flux limiters derived from Eddington factors lead to a well-behaved theory whereas

using the actual Eddington factors can produce anomalous results. A wealth of information on flux-

limiters in the general context of conservation laws may be found in [43]. Currently, the preferred

strategy for calculating the Variable Eddington Factors is by transport sweep, just as in QD [86,98].

1.3.2.4 LOQD Equations

The QD Method (or the VEF Method with factors calculated from ψ) is not a low-

order transport method, because one must still solve the transport equation Eq. (1.11) in order

to get factors Eαβ [ψ] and C[ψ]. However, one can still see an advantage when solving fully time-

dependent and multi-group radiation transport problems with coupling to other physics. Under

these conditions, the LOQD equations are fully discretized in time and energy and the factors

Eαβ [ψ] and C[ψ] may simply be treated as nonlinear data that must be updated periodically via

snapshot-in-time solutions of the transport equation [86].

1.3.3 Applications of the QD Method

The point of sections entitled “QD as a Low-Order Transport Method” and “QD as an

Acceleration Method” was to give the reader insight into the relation of the QD Method to other
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radiation transport methods. At this point, one thing should be clear to the reader, that there

is no simple solution to transport problems as all methods have advantages and disadvantages.

In particular with the QD Method, the low-order quasidiffusion (LOQD) equations is useful as

both an acceleration method and as a low-order representation of the transport problem, the main

impediment to their use may be they are difficult to discretize and solve. However, QD has already

been applied successfully in many areas, including radiation hydrodynamics and reactor physics,

and properties of the method have been investigated by numerous authors [18, 24,31,33,39,40,47,

51,95]. We shall remark on some in the following sections.

1.4 History of QD Discretizations

A QD discretization requires both a discretization of the transport equation Eq. (1.3) and

the LOQD equations Eq. (1.4). Therefore it makes sense to discuss both transport and LOQD

discretizations, beginning with LOQD.

1.4.1 LOQD Spatial Discretizations

As discussed in Sec.1.2.1.1, mathematically the LOQD equations are similar to convection-

diffusion equations, with two important exceptions, the LOQD equations have second-order cross-

derivative terms, ∂2φ/∂x∂y, and the “diffusion coefficients” are not isotropic, Exx 6= Eyy. Also, we

desire discretizations for the first-order form of the LOQD equations, shown in Eq. (1.4), not the

second-order form shown in Eq. (1.8). For these reasons, many of the spatial discretizations from

convection-diffusion and tensor diffusion literature are difficult to apply to the LOQD equations.

However, our LOQD system does represent a conservation law and the desireable qualities for
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modelling conservation laws, as laid out by Leveque [43], apply to us as well. As is often done with

conservation laws for elliptic equations, we focus on finite volume discretizations which are locally

conservative and have an appropriate definition of the net current ~J on faces, thus guaranteeing

conservation globally.

In the LOQD literature, the most advanced discretization is for time-dependent, convex

quadrilaterals in Cylindrical RZ geometry, due to Aristova, Gol’din, and Kolpakov [68]. In Cartesian

XY geometry, there are the LOQD discretizations of Gol’din, Gol’dina, and Kolpakov [24] and

Aristova and Kolpakov [54], developed for skewed quadrilaterals and used for problems with shocks.

For nuclear reactor assembly-level calculations, a coarse-mesh finite element discretization was

developed by Hiruta and Anistratov [95,103].

Another difficulty arises because the LOQD operator is non-self-adjoint in multi-dimensions,

so that the discretization of the LOQD equations generally results in a non-symmetric linear sys-

tem, which is difficult to solve. Larsen and Miften devised a symmetric version of quasidiffusion,

“symmetrized Quasidiffusion” (SQD) [50, 51] by replacing the solution of the non-self-adjoint op-

erator with two symmetric ones. An SQD discretization for rectangles was presented in [51] and

structured meshes of triangles in [56].

1.4.2 Transport Spatial Discretizations

Although the QD method imposes no restriction on discretizations for the high-order and

low-order equations, there is a strategy in choosing a high-order (transport) spatial discretization

which compliments the LOQD equations. Particularly, the Eαβ factors should satisfy some smooth-

ness requirements because they appear in derivatives. Typically, this is ensured with a monotonic
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transport method. However, this is not the only possibility. As an alternative, the angular flux

or the QD factors may be monotonized (or smoothed) before using them in the LOQD equations.

Negative angular fluxes are especially harmful with QD as the calculated factors may be completely

unphysical, i.e. outside the bounds of Exx, Eyy ∈ [0, 1] and Exy ∈ [−1/2, 1/2]. Historically with

QD [4, 18, 26, 54], the transport equation was solved with a method of short characteristics with

monotonization.

The result of monotonization is a nonlinear characteristic method [3], which are similar

to the idea of ENO (essentially non-oscillatory) methods [32]. It is important to note that the

short characteristics schemes used do not need to be conservative because the LOQD equations of

Eq. (1.4) have explicit conservation [47]. The most important thing for the transport discretization

is that it approximates the “shape” of the solution ψ well, embedded in the Eαβ [ψ] and C[ψ] factors.

We also desire a transport local discretization, that is the transport equation may be solved cell

by cell via transport sweep, where incoming fluxes ψIN are known from upwind cells and the cell-

local discretization is used to calculate outgoing fluxes ψOUT . These reasons, and the fact that

characteristic methods are relatively easily extended to arbitrary meshes leads us to consider them

for our transport discretization for arbitrary meshes.

1.4.2.1 Characteristic Methods

Characteristic methods for deterministic transport [21] may be divided into two groups:

short and long. The long characteristic method is widely used for nuclear reactor assembly-level

calculations [20] and has its advantages, notably no interpolation error compared to short char-

acteristics. However long characteristics has error associated with approximating volume-average
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quantities from line-average contributions;, for details see [72] and the references therein. We con-

centrate on short characteristic methods, in particular the vertex-based methods as in [6, 26] and

conservative short characteristics methods, described below.

Conservative short characteristic methods were originally formulated in the Russian work

[34], we shall call subcell balance methods. The subcell balance discretizations operate on directionally-

dependent slices through cells, or subcells. Because the subcells are geometrically simple, subcell

balance methods are fairly simple to derive for unstructured meshes. The original subcell balance

method due to Bakirova, V.Ya. Karpov, and M.I. Mukhina [34] was for transport on rectangles.

In 1993, Voronkov and Sychugova produced the “Characteristic Discrete Ordinates Method” [52].

The subcell balance concept was investigated later by the following researchers:

• DeHart in 1992 produced “Extended Step Characteristics” [46],

• Azmy in 1992 produced “Arbitrarily High Order Transport” [45],

• Grove in 1995 produced the “Slice Balance Method” [60],

• Miller and Mathews in 1996 produced “Split-Cell Methods” [61], and

• Walters, Wareing, and Marr in 1995 produced ”Nonlinear Characteristics” [58].

Below we shall briefly discuss these methods. Note that all these methods involve equations along

characteristics, and the first such characteristic transport method was step characteristics (SC) due

to Lathrop in 1969 [9].

Extended Step Characteristics

The Extended Step Characteristics (ESC) method of DeHart [46, 57] was developed for general,
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polygonal geometries. ESC10 has face-average and cell-average angular flux unknowns, and assumes

a flat source distribution within a cell and flat incoming flux distribution on faces. The method is

strictly positive and O(h).

Arbitrarily High-Order Transport

The Arbitrarily High-Order Transport (AHOT) method of Azmy [45] was developed on rectangular

meshes and uses short characteristics to develop a system of equations for 0th through N th spatial

moments of the angular flux. Results were presented which showed O(hN ) convergence. An AHOT

method for tetrahedral meshes is developed in [77].

Characteristic Discrete Ordinates Method

The Characteristic Discrete Ordinates Method (CDSN ) of Voronkov and Sychugova [52] was de-

veloped on rectangular meshes. Three methods were developed: the CDSN 1 method of O(h) and

CDSN and CDSN 2 methods of O(h2). They exploit the linearity of the transport L operator and

use different discretizations for the incoming flux part and source part of the solution within a

subcell. They then compare their methods to diamond differencing (DD) and linear characteris-

tics (LC), noting good performance on coarse meshes, the expected convergence orders, and fewer

negative fluxes than DD. However, they note overall LC seems superior, producing smaller errors

consistently than the CDSN methods.

Slice Balance

The Slice Balance method of Grove [60] presents a set of equations for O(hN ) transport on arbitrary

polygonal meshes. Thus, to some degree, it is an extension of DeHart’s ESC method [46], in that it

develops equations for the 0th through N th spatial moments—DeHart considered subcell balances

10It is currently used in the radiation transport method of Triton, the module used for nuclear reactor assembly
level calculations in SCALE [111], a code package developed at Oak Ridge National Laboratory.
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on only the Oth moment. Also, to some degree, it is an extension of Azmy’s AHOT-C method [45],

in that it develops equations for polygonal meshes, whereas Azmy’s O(hN ) method only applied to

rectangular meshes. Grove discusses the advantages of decomposition of arbitrary polyhedral cells

into “slices” (subcells), highlighting the fact that a slice is like a slab, therefore the slice balance

method may be used to extend 1D methods into multi-D. Also, even concave cells may be handled

by the slice balance method, if one is willing to globally decompose the mesh into slices, because

slices are guaranteed to be convex. The resulting transport problem on slices permits a face-based

transport sweep, which may allow more freedom in processor scheduling (for parallel applications)

than a cell-based sweep, as well leading to fewer (or no) cycles. In the dissertation [60], slice balance

discretizations were presented for step-characteristics (SB-SC), linear-characteristics (SB-LC), and

a diamond difference-like method (SB-DDL). The SB-SC method is identical to the ESC method

of DeHart.

Split-Cell Methods

The Split-Cell Methods of Miller and Mathews [61] take a different approach to transport solutions

on unstructured meshes, preferring to consider meshes of triangles instead of polygons. Their split-

cell discretizations, which they call “quadratures”, express moments of the outgoing and interior

angular flux in a triangular cell in terms of moments of the incoming angular flux and source

in the cell. They decompose each triangular cell into 2 triangular subcells and balance the 0th

and 1st moments, thus defining the Split-Cell LC method (S-LC). The S-LC method demonstrates

good performance and the expected O(h2). In 2000, Mathews and Miller [69] extended the S-LC

method to tetrahedral meshes, where each tetrahedron is split into 4 tetrahedral subcells. Split-cell

methods have also been formulated that have exponential representations of the incoming angular
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fluxes and sources (S-ExpC). In 1997, Mathews and Brennan formulated the S-ExpC method for

triangles [63], and in 2001 by Brennan, Miller, and Mathews formulated the S-ExpC method on

tetrahedra [76].

Nonlinear Characteristics

The Nonlinear Characteristic (NC) scheme of Walters, Wareing, and Marr [58] is formulated for

meshes of rectangles with an exponential representation of the source and spatial moments of the

angular flux on faces. The NC method is strictly positive and very similar to exponential split-cell

methods (S-ExpC) of Miller and Mathews, but derived completely differently with arguments from

information theory.

1.4.2.2 Other Transport Discretizations

Other common SN transport discretizations utilize discontinuous finite elements and cor-

ner balances.

Discontinuous Finite Elements

On orthogonal meshes, one can construct a discontinuous FEM (DFEM) for transport on quadri-

laterals using bi-linear discontinuous basis functions, called BLD. On non-orthogonal quadrilateral

meshes, in order for this BLD to satisfy the thick diffusion limit, one must construct the FEM with

bi-linear basis functions {1, x, y, xy} on rectangles and map the result to the arbitrary quadrilateral

11. On arbitrary triangular (and tetrahedral) meshes using linear-discontinuous basis functions the

FEM is called LD. Additionally, Adams and Stone have developed a transport discretization on

polyhedrons [94] which uses a piece-wise linear (PWL) finite element method (FEM).

11In mapping the bi-linear basis from rectangle to the arbitrary quadrilateral, the basis on arbitrary quadrilaterals
is recognized as ratios of bi-linear basis functions, known as the Wachspress basis functions [80]. This is related to
the fact that the inverse of a bi-linear transformation is not a bi-linear transformation [37].
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Corner Balances

Corner balance methods are based on decomposition of the cell into corners with balance and

auxiliary equations that allow the methods to satisfy certain asymptotics [64]. They have an

advantage over DFEM methods in that an FEM matrix need not be inverted in each cell, outgoing

fluxes are algebraically related to incoming ones.

1.4.2.3 Asymptotics

One final important aspect of a transport discretization is that it preserve some asymp-

totics. For example, a transport discretization should reduce to a reasonable approximation of

the exponential in a source free attenuating medium and behave well on optically thick spatial

cells of many mean-free paths (mfp), where 1mfp = 1/σt. Another important asymptotic limit is

the thick diffusion limit, where cells are thick compared to the diffusion length 1/
√

3σtσa, and it

is important that the transport discretization reduce to a reasonable diffusion discretization [38].

With DFEM transport discretizations, lumping is commonly used to increase robustness and better

handle asymptotic behavior [80]. The thick diffusion limit for characteristic methods is discussed

in [66].

1.5 Advancement

The ideal transport method would discretize (and solve) the transport equation in such a

way to

• conserve particles,

• preserve the asymptotic diffusion limit,
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• converge rapidly for all types of problems (e.g. highly scattering media, heterogeneous media,

etc.), and

• converge rapidly for non-linear problems.

The Quasidiffusion method has been shown to satisfy these criteria. However, radiation transport

practitioners demand more of discretizations. In particular, they should

• be valid on unstructured meshes,

• have robust and efficient solutions, and

• be at least second-order accurate in space.

This work seeks to address the second set of requirements while showing we have kept the first list

intact, with the exception that we do not investigate non-linear problems here.

The main result of this research is the new low-order quasidiffusion (LOQD) discretization

which is accurate on arbitrary meshes of quadrilaterals in XY geometry. We present this new

discretization in Chapter 2, along with a general FV framework for LOQD discretizations and new

interface conditions which allow a discretization of the LOQD equations to be used on hanging-

node meshes. In Chapter 3, we present two transport discretizations which are compatible with

the LOQD discretization presented in Chapter 2, and the manner in which QD factors should be

calculated, as well as a new spatial representation of the scattering source. In Chapter 4, we also

present details on the solution of the LOQD equations via iterative methods. In Chapter 5 we

present some numerical results using our new QD method.

The results of this research have been presented by the candidate in the following venues:

1. American Nuclear Society (ANS) Summer Meeting in Boston, MA, June 24-28, 2007,
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2. ANS Winter Meeting in Washington, D.C. November 11-15, 2007, and

3. NC State University, Nuclear Engineering Department seminar in Fall 2007.

Results have been published in ANS conference transactions [105,106] and a full conference paper

was accepted for publication in the peer-reviewed proceedings of the ANS 2009 Topical Meeting of

the Mathematics and Computation (M&C) Division [110].

1.6 Arbitrary Mesh Terminology

In describing an arbitrary 2D mesh, the following indices will be used to denote the part

of the mesh to which a quantity belongs: c for cell, f for faces, v for vertices, fb for boundary faces

(on the domain boundary), and i for interfaces.

The most basic mesh we use is the simple orthogonal mesh, described by the number

of cells in the x and y directions, NC = Nx × Ny. An orthogonal hanging-node (or multi-

level [97]) mesh may be created by refining a region of the simple mesh, by dividing all the

quadrilateral cells in that region into four smaller quadrilaterals. Refining a single region leads

to a two-level mesh. Further refinement (of a subregion) leads to a three-level mesh, etc.
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Algorithm 2: Randomized mesh generation algorithm.

1. Generate an Nx ×Ny mesh with square cells of width h.

2. At each interior vertex, sample a random angle in θ ∈ [0, 2π] and perturbation

fraction p ∈ [0, pmax].

3. Move vertices from original location (xv, yv) to new location,

xv
′

= xv + p h cos θ,

yv
′

= yv + p h sin θ.

4. Scale the mesh by factors Hx and Hy.

xv
′′

= Hxx
v′

yv
′′

= Hyy
v′

In order to generate arbitrary quadrilateral meshes on which to test our new transport

methods, we perturb vertices of an orthogonal mesh. We compare results on orthogonal and

randomized meshes for problems which are well-suited to orthogonal meshes to demonstrate the

relative invariance of our methods with respect to the mesh. Preserving the mean cell-width of a

mesh allows us to analyze convergence on randomized meshes. The randomization that preserves the

mean cell-width of a mesh is described in Alg. 2. The maximum perturbation is pmax ≈ 0.35 such

that cells remain convex (see Fig. 1.4.) The cell-width of a cell c is calculated as hc = (V c)1/Ndim ,

where Ndim is the number of dimensions in the problem and V c is the volume of the cell. In 2D,

we have hc =
√
V c and the “volume” may be calculated as the area of a polygon by the winding
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Figure 1.4: Perturbation of vertices to construct randomized meshes.

formula,

V c =
1

2

∑

v∈c

(

xv−1 yv − xv yv−1
)

, (1.18)

where v ∈ c indicates summation over all N c
V vertices in cell c and the convention is used that

v − 1 = 0 = N . The mean cell-width of a randomized mesh may be expressed as h̄ =
√
V̄ , where

the mean cell volume is V̄ = 1
NC

∑

V c. With the perturbations described in Alg. 2, the mean

cell-width of a randomized mesh h̄ defined this way is identically equal to the original h of the

orthogonal mesh because the mean cell volume is unaltered by this type of perturbation. This

allows us to analyze convergence as described in the next section.

1.7 Numerical Analysis Tools Used

Our general strategy is to show the accuracy and spatial convergence of our new methods

on orthogonal and randomized meshes. Typical sequences of orthogonal and randomized meshes
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(a) logically-rectangular sequence

(b) left-refined sequence

(c) right-refined sequence

Figure 1.5: Examples of the randomized meshes used in numerical convergence studies. (Mesh cells
colored randomly for contrast.)

on which we analyze convergence are shown in Fig. 1.5. Note that the successively refined random-

ized meshes are not generated from a previous randomized mesh by splitting cells but from new

randomizations of orthogonal meshes.
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1.7.1 Numerical Convergence Analysis with Known Exact Solution

In tests where we have an exact solution, we analyze convergence in the ℓ2 and ∞ (or c)

norms, shown below for the scalar flux φ, where we have a reference scalar flux solution, φexact,

‖φc − φcexact‖ℓ2 =

√

∑

c

(φc − φcexact)
2V c, (1.19)

‖φc − φcexact‖∞ = max
c

|φc − φcexact|, (1.20)

where φcexact is the cell-average exact solution, φc is the approximate cell-average, and V c is the

cell volume (area in 2D). The convergence ratio Ratio in a given norm is then the ratio of terms

on successively refined meshes (h and h/2, respectively),

Ratio =
‖φch − φcexact‖
‖φch/2 − φcexact‖

, (1.21)

where h is the mean cell-width of the mesh. The convergence order Order is given as

Order =
logRatio

log 2
, (1.22)

where it is assumed we always refine the mesh by decreasing the mean cell-width h by a factor of

2.

1.7.2 Numerical Convergence Analysis without Exact Solution

In tests where we do not know the solution, we will calculate a region-averaged quantities

and analyze the convergence of this property with the Aitken (aka Richardson) process. For exam-

ple, in many tests we calculate the average scalar flux in a subdomain of the problem and analyze

the convergence of this quantity.
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With the Aitken process, we require approximate quantities on three successively refined

meshes, ah, ah/2, and ah/4,

Ratio =
ah − ah/2

ah/2 − ah/4
. (1.23)

If the Ratio calculated as per Eq. (1.23) is negative, it indicates the approximate solution is oscil-

lating about the actual solution. That is, in order to have asymptotic convergence Eq. (1.23) must

be positive. The convergence order may then be calculated as in Eq. (1.22).
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Chapter 2

A FINITE VOLUME LOQD

DISCRETIZATION

First we describe a general finite volume (FV) framework for discretizing the low-order

quasidiffusion (LOQD) equations. The framework uses a cell-local discretization of the balance

equation, Eq. (1.4a), and the LOQD first moment equations, Eq. (1.4b), plus global boundary

conditions, Eq. (1.4c), and interface conditions. Proper interface conditions are determined for

both single-level and hanging-node meshes. Then, using the general FV framework, we present a

new LOQD discretization for arbitrary quadrilateral meshes. Finally, we present numerical results

for both the new interface conditions and new LOQD discretization.

2.1 General Finite Volume LOQD Methodology

Let us introduce a general finite volume framework for discretizing the LOQD equations

which has cell-average scalar flux unknowns, φc, face-average scalar flux unknowns, φf , and face-
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average normal current unknowns, Jf = ~Jf · ~nf , where ~nf is the outward normal of face f . For

convenience, consider the LOQD equations in the following form,

~∇ · ~J + (σt − σs)φ = qext in domain G, (2.1a)

~∇ · (φE) + σt ~J = 0 in domain G, (2.1b)

~n · ~J + JIN = C(φ− φIN ) on boundary ∂G, (2.1c)

where we have used the notation ~∇ · (φE) for the tensor divergence explicitly shown in Eq. (1.4b).

In order to derive the general FV framework, we proceed as follows.

1. Integrate the scalar QD balance equation of Eq. (2.1a) over each cell c in the mesh.

2. Integrate the vector QD first moment equation of Eq. (2.1b) over each face f of cell c and

then project the result onto the face outward normal ~nf .

3. Integrate boundary conditions of Eq. (2.1c) over each boundary face.

4. Specify interface conditions.

The first two steps of this process yield N c
F + 1 equations for each cell, where N c

F is the number of

faces on cell c,

∑

f∈c

JfAf + σaφ
cV c = qcextV

c for each cell c, (2.2a)

~∇ · (φE)
∣

∣

∣

f
· ~nfAf + σtJ

fAf = 0 for each face f in cell c. (2.2b)

Per cell, there is one cell-average scalar flux φc, N c
F face-average scalar-fluxes, and N c

F face-average

normal currents, for a total of 2N c
F +1 unknowns per cell. A specific FV discretization is defined by

the approximation used for the face-average tensor divergence term, ~∇ · (φE)
∣

∣

∣

f
in Eq. (2.2), which
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will be deferred momentarily. The third step of the process yields discrete boundary conditions for

each boundary face fb of NBF boundary faces total,

Jfb + Jfb

IN = Cfb(φfb − φfb

IN ) for each boundary face fb, (2.2c)

The fourth and final step of specifying interface conditions that provides the remaining equations

is discussed in the next section. The proper interface conditions are shown to be

φif1 = φif2 ,

J if1 = −J if2 ,

for standard interfaces i of 2 faces (see Fig. 2.1(a)) and

Aif1φif1 = Aif2φif2 +Aif3φif3 ,

J if1 = −J if2 ,

J if1 = −J if3 ,

for interfaces i of 3 (or more) faces—see Fig. 2.1(b).

2.1.1 Interface Conditions

To determine the interface conditions, we look at the remaining number of equations after

considering the discretized balance equation, first moment equations, and boundary conditions in

Eq. (2.2a), Eq. (2.2b), and Eq. (2.2c), respectively. Globally, we have a number of equations

Neqn =

NC
∑

c=1

(N c
F + 1) +

NI
∑

i=1

N i
IC +NBF , (2.3)
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(b) hanging node interface ihang

Figure 2.1: Interfaces considered: (a) standard istd and (b) hanging node ihang.

where NI is the number of interfaces and N i
IC is the number of interface conditions on interface i.

The number of unknowns is simply

Nunk =

NC
∑

c=1

(2N c
F + 1). (2.4)
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We shall use these results to show how many interface condition equations we are allowed. A

necessary condition for a unique solution is Neqn = Nunk, or equivalently

NI
∑

i=1

N i
IC +NBF =

NC
∑

c=1

N c
F .

The quantity
∑NC

c=1N
c
F is simply the total number of faces, NF , in the mesh. Splitting the number

of faces in the mesh into NBF boundary faces and NIF interior faces, NF = NBF +NIF , we arrive

at the condition
NI
∑

i=1

N i
IC = NIF , (2.5)

which says that (globally) we must have a number of interface conditions equal to the total number

of interior faces in the mesh. If we represent NIF in terms of each interface, we have

NIF =

NI
∑

i=1

N i
IF (2.6)

Thus, by Eq. (2.5) and Eq. (2.6), the only appropriate choice is to have a number of interface

conditions at each interface equal to the number of faces of the interface, N i
IC = N i

IF . All the

results up to this point are valid in 2D or 3D.

2.1.1.1 Example Unknown Counts

As an example, consider an N × N logically rectangular mesh which has N c
F = 4 faces

per cell and N i
F = 2 faces per interface. There are NC = N2 cells and NF = 4N2 faces in the

mesh. Of the 4N2 faces, NBF = 4N are boundary faces and NIF = 4N(N − 1) are interior

faces. There are 2 faces per interface, so there are NI = 2N(N − 1) interfaces. Thus there are
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Nunk = NC + 8NC = 9N2 unknowns (9 per cell) and an equal number of equations:

Neqn =

NC
∑

c=1

(N c
F + 1) +

NI
∑

i=1

N i
IF +NBF ,

= 5NC + 2NI +NBF ,

= N2 + 4N2 + 4N(N − 1) + 4N,

= 9N2.

In the previous section, we showed that the number of interface condition equations required are

the same as the number of faces on an interface, N i
F . Thus an interface with 2 faces has 2 interface

conditions, an interface with 3 faces has 3 interface conditions, and so on. In the following sections,

we present and analyze new interface conditions for hanging node interfaces of three faces.

2.1.2 Standard Interface Conditions

On logically rectangular meshes (or any single level mesh) there are N i
F = 2 faces per

interface, so we are allowed 2 interface condition equations per interface. It is thus possible to

demand continuity of the face-average scalar flux and face-average normal current, respectively,

φif1 = φif2 , (2.7a)

J if1 = −J if2 , (2.7b)

for the pairs of faces if1 and if2 of each interface i. Note the negative sign in Eq. (2.7b), because if1

and if2 have outward normals pointing in opposite directions, ~nif1 = −~nif2 . We call these standard

interface conditions.
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2.1.3 New Hanging-Node Interface Conditions

Now we consider hanging-node meshes [97,105] with interfaces as in Fig. 2.1(b) which may

have only a single hanging node at the midpoint of the larger, master face if1. The two subfaces

are denoted if2 and if3. Such interfaces have 3 faces and thus require 3 interface conditions at each

interface, i.e. the standard interface conditions of Eq. (2.7) cannot be used.1 Three possible sets of

interface conditions are given below.

2.1.3.1 Strong Current / Weak Scalar Flux Interface Conditions

The strong current interface condition specifies that the current at each subface is equal

to the current at the master face. The weak scalar flux interface condition specifies the scalar flux

on the master face is equal to an area-weighted sum of scalar fluxes on subfaces.

Aif1φif1 = Aif2φif2 +Aif3φif3 , (2.8a)

J if1 = −J if2 , (2.8b)

J if1 = −J if3 . (2.8c)

1It is possible to consider the master face, if1, as two separate faces of a 5-sided polygon and enforce the stan-
dard interface conditions—the disadvantage is more unknowns are introduced into the system. We pursue interface
conditions that do not introduce more unknowns into the system by imposing weaker conditions.
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2.1.3.2 Strong Scalar Flux / Weak Current Interface Conditions

This condition swaps the scalar flux and current conditions, using a strong interface con-

dition for the scalar flux and a weak one for the current.

Aif1J if1 = −Aif2J if2 −Aif3J if3 , (2.9a)

φif1 = φif2 , (2.9b)

φif1 = φif3 . (2.9c)

2.1.3.3 Strong Current / Weak Factor-Weighted Scalar Flux Interface Conditions

This condition is similar to Eq. (2.8a) but for vertical faces (aligned with the y−axis) we

add Exx QD factors to the weighting and for horizontal faces (aligned with the x−axis) we add Eyy.

This interface condition of Eq. (2.10a) is only valid for faces aligned with the x−axis or y−axis.

Eif1xx A
if1φif1 = Eif2xx A

if2φif2 + Eif3xx A
if3φif3 for vertical faces, (2.10a)

Eif1yy A
if1φif1 = Eif2yy A

if2φif2 + Eif3yy A
if3φif3 for horizontal faces, (2.10b)

J if1 = −J if2 , (2.10c)

J if1 = −J if3 . (2.10d)

2.2 New Arbitrary Mesh LOQD FV Discretization

In this section, we will present a new discretization of the LOQD equations via a finite

volume method. The discretization is based on representing average values at the appropriate

centers and then applying a point-wise gradient approximation using a corresponding reciprocal

basis [89].
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2.2.1 Point Values vs. Average Values

It is essential to show that it is an O(h2) approximation to consider cell-average and face-

average values as point values at cell and face-centers, respectively. Consider the following Taylor

series expansion of a variable ξ(x, y),

ξ(x, y) = ξ0,0 +
∂ξ

∂x

∣

∣

∣

∣

0,0

x+
∂ξ

∂y

∣

∣

∣

∣

0,0

y +

∂2ξ

∂x∂y

∣

∣

∣

∣

0,0

xy +
1

2

∂2ξ

∂x2

∣

∣

∣

∣

0,0

x2 +
1

2

∂2ξ

∂y2

∣

∣

∣

∣

0,0

y2 +O(h3). (2.11)

Without loss of generality, let us shift our coordinate system so the origin is the cell center, (xc, yc) =

(0, 0), where

xc =
1

V c

∫∫

c
x dxdy,

yc =
1

V c

∫∫

c
y dxdy. (2.12)

Applying the averaging operator, 1
V c

∫∫

c ◦dxdy, to Eq. (2.11) over cell c yields

ξc = ξ0,0 +
∂ξ

∂x

∣

∣

∣

∣

0,0

xc +
∂ξ

∂y

∣

∣

∣

∣

0,0

yc +

∂2ξ

∂x∂y

∣

∣

∣

∣

0,0

〈xy〉c +
1

2

∂2ξ

∂x2

∣

∣

∣

∣

0,0

〈x2〉c +
1

2

∂2ξ

∂y2

∣

∣

∣

∣

0,0

〈y2〉c +O(h3). (2.13)

Because (xc, yc) = (0, 0), first-order terms disappear and we have the following expression for the

leading order error in the difference between the average value and the center value ξ0,0,

ξc − ξ0,0 =
∂2ξ

∂x∂y

∣

∣

∣

∣

0,0

〈xy〉c +
1

2

∂2ξ

∂x2

∣

∣

∣

∣

0,0

〈x2〉c +
1

2

∂2ξ

∂y2

∣

∣

∣

∣

0,0

〈y2〉c. (2.14)
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The second-order terms are defined as

〈xy〉c =
1

V c

∫∫

c
x y dxdy, (2.15a)

〈x2〉c =
1

V c

∫∫

c
x2 dxdy, (2.15b)

〈y2〉c =
1

V c

∫∫

c
y2 dxdy. (2.15c)

Note that on rectangles, the term 〈xy〉c is identically zero. For non-orthogonal quadrilaterals, the

term 〈xy〉c may be positive or negative. The other terms are positive, 〈x2〉c > 0 and 〈y2〉c > 0, on

any quadrilateral.

It is possible to transform x and y according to x = hcη/2 and y = hcν/2 where η and

ν are not mesh-dependent and the mean cell width is hc =
√
V c. This transformation leads to

Eq. (2.15c) represented as

〈xy〉c = (hc)2
∫∫

c
η ν dηdν = O(h2), (2.16a)

〈x2〉c = (hc)2
∫∫

c
η2 dηdν = O(h2), (2.16b)

〈y2〉c = (hc)2
∫∫

c
ν2 dηdν = O(h2). (2.16c)

Thus Eq. (2.14) reduces to

ξc − ξ0,0 = O(h2), (2.17)

that is, cell-average and cell-center values are identical to O(h2). The same argument may be made

for face-average and face-center values by writing another Taylor series centered about the face.

This result also extends trivially to 3D.
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2.2.2 Discretization Details

We make the second-order in space O(h2) approximation that the face-average value of

the tensor divergence terms ∂
∂βφEαβ may be evaluated at the face-center. Using the corresponding

reciprocal basis as shown in [89] for a diffusion discretization, we can write a differencing expression

for the derivative in face-average quantity ξf in terms of other cell-local values, i.e. the cell-average

ξc and all other face-average ξf
′
in the cell,

∂

∂β
ξf = (ξf − ξc)Gfβ +

∑

f ′∈c

ξf
′

Hff ′

β +O(h2), (2.18)

where Gfβ and Hff ′

β are the β-th component of purely geometric factors, most easily defined in

vector notation as follows,

~Gf =
~Af

~Af · ~Rf
, (2.19a)

~Hff ′ =
1

V c

(

~Af
′ − ~Af

~Rf · ~Af ′

~Rf · ~Af

)

, (2.19b)

where ~Af are face area vectors, ~Af = ~nfAf , and ~Rf are cell-to-face vectors, ~Rf = ~rc − ~rf , where

~rc and ~rf are the coordinates of the cell-center and face-center, respectively. The approximation

of Eq. (2.18) may be interpretted as using the difference between face-average value ξf and cell-

average value ξc to approximate the projection of the gradient at face f in the direction of ~Rf .

Values at other faces ξf
′

are used to estimate the projection of the gradient at face f in the

transverse directions. The expression simplifies considerably when face area vectors ~Af and cell-

to-face vectors ~Rf are aligned, for example, with parallelograms. In our case, we have ξf = Efαβφ
f
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and our new cell-local discretization is given as

∑

f∈c

JfAf + σaφ
cV c = qcextV

c (2.20a)

for each cell c,

∑

α=x,y

nfα
∑

β=x,y



(φfEfαβ − φcEcαβ)G
f
β +

∑

f ′∈c

φf
′

Ef
′

αβH
ff ′

β



+ σtJ
f = 0 (2.20b)

for each face f ∈ c.

2.2.3 LOQD Discretizations from Literature

In this section we present some LOQD discretizations from the literature, cast into our

general FV framework to facilitate comparison.

2.2.3.1 GGK Discretization on Orthogonal Meshes

The discretization due to Gol’din, Gol’dina, and Kolpakov (GGK) [24] is derived by divid-

ing the quadrilateral into 4 half-cells, and integrating the vector first moment Eq. (1.4b) equation

over each half-cell. The four faces of a rectangular cell are denoted f = B,R, T, L for the bottom,

right, top, and left sides respectively. The cell size is hx by hy in the x-direction and y-directions,

respectively. The tensor divergence term then is evaluated in terms of line integrals over the edges

of the half-cell. Consider the right R half cell for example. One proceeds to evaluate the integrals

counterclockwise over face R for a distance hy, then half of face T for a distance hx/2, through the

center of the cell for a distance hy, then finally over half of face B for a distance hx/2. Finally,

the approximation is made that the half-cell average current is the face-average current. As an
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alternative, we use Gauss’s divergence theorem for tensors over the right half-cell, denoted cR,

φR
(

ER · ~AR
)

+
1

2
φRT

(

ERT · ~AT
)

+

φRC
(

ERC · ~ARC
)

+
1

2
φRB

(

ERB · ~AB
)

+ σt ~J
cRV cR = 0, (2.21)

where φR is the face-average scalar flux on the right face, ER is the appropriately defined QD tensor

on the right face, ~AR is the area vector of the right face, φRT is the average scalar flux over the

right half of the top face, and ERT is the appropriately defined average QD tensor of the right half

of the top face. Similarly, RC denotes the average quantities through the center (C) of the cell

which joins top and bottom faces, RB denotes the right half of the bottom face quantities, RT

denotes the right half of the top face quantities. The volume of the right half-cell is V cR = hxhy/2

and ~Jc
R

denotes the right half-cell average current. The following approximations are made in [24]

in order to arrive at the set of unknowns:

1. The right half-cell average current is equal to the right face-average current, ~Jc
R ≈ ~JR.

2. The portions of the right-top RT and right-bottom RB quantities may be taken to be equal to

the average quantities for the entire top and bottom faces, ERT ≈ ET , ERB ≈ EB, φRT ≈ φT ,

φRB ≈ φB.

3. The right half-cell center RC quantities may be taken to be cell-average c quantities, ERC ≈

Ec, φRC ≈ φc.

Utilizing these approximations and projecting the result onto the right face normal, ~nR, we get

φR
(

ER · ~AR
)

· ~nR +
1

2
φT
(

ET · ~AT
)

· ~nR +

φc
(

Ec · ~ARC
)

· ~nR +
1

2
φB
(

EB · ~AB
)

· ~nR + σtJ
Rhxhy

2
= 0.
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In the orthogonal case, ~nR = (1, 0)t, ~AR = ~nR hy, ~AT = (0, 1)t hx, ~ARC = (−1, 0)t hy, ~AB =

(0,−1)t hx, where t denotes the transpose to avoid confusion with T for top, which leads to

φR
(

ERxxhy

)

+ φT
(

ETxy
hx
2

)

− φc
(

Ecxxhy

)

− φB
(

EBxy
hx
2

)

+ σtJ
Rhxhy

2
= 0.

Division by hxhy/2 leads us to the “GGK” approximation of right face first moment equation for

orthogonal cells,

2

hx
(φcEcxx − φRERxx) +

1

hy
(φTETxy − φBEBxy) + σtJ

R = 0. (2.22)

2.2.3.2 GGK Discretization for Skewed Quadrilateral Meshes

A discretization for skewed quadrilaterals can be extended from the GGK discretization

for orthogonal quadrilaterals by using the appropriate half-cell volumes and center area-vectors (e.g.

V RC and ~ARC , respectively for the right face) for a skewed quadrilateral. If the top face-center has

coordinates ~r T = (xT , yT )t and the bottom face-center has coordinates ~rB = (xB, yB)t, then the

area vector which represents the completion of the half-cell boundary integration for the right half

cell by joining points ~r T and ~rB is

~ARC =









yB − yT

xT − xB









. (2.23)

The volume of the right half-cell V cR is calculated by the winding formula in Eq. (1.18) with the

following sequence of points: ~r TR, ~r T , ~rB, and ~rBR. After taking the dot-product with the face-

normal ~nR, the resulting first moment equation for the skewed quadrilateral GGK discretization
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is

(

φR
(

ER · ~AR
)

+
1

2
φT
(

ET · ~AT
)

+

φc
(

Ec · ~ARC
)

+
1

2
φB
(

EB · ~AB
)

)

· ~n
R

V cR
+ σtJ

R = 0. (2.24)

Another option exists for calculating the area vector and half-cell volume. If one considers the

half-cell integral as proceeding from top face-center, to cell-center, to bottom face-center, one has

the following approximation,

φR
(

ER · ~AR
)

+
1

2
φT
(

ET · ~AT
)

+

φc
(

Ec · ~ARC1
)

+ φc
(

Ec · ~ARC2
)

+
1

2
φB
(

EB · ~AB
)

+ σt ~J
RV cR = 0,

with two area vectors now,

~ARC1 =









yC − yT

xT − xC









,

~ARC2 =









yB − yC

xC − xB









,

and the half-cell volume calculated from Eq. (1.18) and the following sequence of points that in-

cludes the cell-center: ~r TR, ~r T , ~rc, ~rB, and ~rBR. The two area vectors actually lead to the same

approximation, ~ARC = ~ARC1 + ~ARC2, so the alternate GGK discretization only has a different V cR .

We have observed through numerical experiments that the definition of half-cell volume which does

not include the center of the cell yields superior accuracy, so we will use it for the remainder.
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2.2.3.3 AK Discretization for Skewed Quadrilateral Meshes

The discretization of Aristova and Kolpakov (AK) [68] uses the same half cells as the GGK

discretization in its derivation but, considering the right half-cell again, expresses the integration

of φ over the top (T ) and bottom (B) faces as the integration of a linear function based on φR

and φc, instead of using φT and φB as in the GGK discretization. The authors report increased

accuracy and robustness over the GGK discretization for problems with shocks and other features

that lead to large discontinuities and/or gradients in the solution [68]. The first moment equation

with the AK discretization is as follows,

(

φR
(

ER · ~AR
)

+
1

4
(φR + φc)

(

EB · ~AB
)

+

φc
(

Ec · ~ARC
)

+
1

4
(φR + φc)

(

ET · ~AT
)

)

· ~n
R

V cR
+ σtJ

R = 0. (2.25)

The balance equation is the same as in Eq. (2.2a) but obviously, the first moment equation in

Eq. (2.25) is different. As opposed to Eq. (2.22), it leads to a first-moment equation on each face

which is only dependent on one face-average scalar flux (e.g. φR), one face-average normal current

(e.g. JR), and the cell-average scalar flux φc.

2.2.4 Discretization Comparisons

JM discretization geometry factors for an (orthogonal) rectangular cell are shown in Ta-

ble 2.1 and Table 2.2. When substituted into the moment equation of Eq. (2.20b), these geometry

factors for the right face, f = R, lead to

2

hx
(φcECxx − φRERxx) +

1

hy
(φTETxy − φBEBxy) + σtJ

R = 0, (2.26)
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which is the same expression as in the GGK discretization. Thus, for rectangular cells, the half-cell

discretization described in 2.2.3.1 [24] may be interpretted as our FV framework with the tensor

divergence approximated as in the JM discretization. As opposed to the multiple approximations

necessary to arrive at the GGK approximation of Eq. (2.26) with the half-cell framework, we only

need Eq. (2.18) on rectangles. If the cross terms are zero, i.e. Exy = 0, both the GGK and JM

Table 2.1: Rectangular Cell ~Gf Geometry Factors.

f ~Gf

R ( 2/hx , 0 )t

T ( 0 , 2/hy )t

L (−2/hx , 0 )t

B ( 0 , −2/hy )t

Table 2.2: Rectangular Cell ~Hff ′ Geometry Factors.

~Hff ′

f/f ′ R T L B

R ( 0 , 0 )t ( 0 , 1/hy )t ( 0 , 0 )t ( 0 , −1/hy )t

T ( 1/hx , 0 )t ( 0 , 0 )t (−1/hx , 0 )t ( 0 , 0 )t

L ( 0 , 0 )t ( 0 , 1/hy )t ( 0 , 0 )t ( 0 , −1/hy )t

B ( 1/hx , 0 )t ( 0 , 0 )t (−1/hx , 0 )t ( 0 , 0 )t

discretizations on orthogonal meshes correspond to a five-point finite-difference diffusion stencil.
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2.3 Results

Here we present tests of new interface conditions and our new JM discretization for the

LOQD equations. We present analytic tests via manufactured solutions as well as numerical tests

in which we must generate the QD factors, Eαβ [ψ] and C[ψ]. Note that generating the QD factors

requires a transport solver for arbitrary quadrilateral meshes which we will defer discussion of to

Chapter 3.

2.3.1 Discontinuous Media Test

(a) left refinement

(b) center refinement

(c) right refinement

Figure 2.2: Discontinuous Media Test: Meshes.
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The domain is a 8cm × 4cm rectangle with discontinuous total cross sections for the left

and right sides: σt = 1cm−1 for x ≤ 4cm and σt = 10cm−1 for x ≥ 4cm. There is no scattering,

vacuum BC on all sides, JIN = φIN = 0, and the external source is qext = 1n/cm3s in a band,

2cm ≤ x ≤ 3cm.

Hanging-node meshes are generated by applying refinement to a region of an single-level

orthogonal mesh: left-side refinement as in Fig. 2.2(a), right-side refinement as in Fig. 2.2(c), and

center refinement as in Fig. 2.2(b). Right and left refinement increases the number of cells by a

factor of 2.5, center refinement increases the number of cells by a factor of 1.75, the standard

refinement increases the number of cells by a factor of 4.

This test is used to compare the Strong Current / Weak Scalar Flux interface conditions

in Eq. (2.8a) (denoted WF) and the Strong Scalar Flux / Weak Current interface conditions in

Eq. (2.9a) (denoted WC). (The Strong Current / Weak Factor-Weighted Scalar Flux Interface

Conditions led to very poor results and will not be considered further.)

2.3.1.1 Data

The reference solution and QD factors, as shown in Fig. 2.3, are from a fine mesh solution

generated with SCSB, which is very accurate for problems with no scattering (see Chapter 3). We

use the SCSB method described in Chapter 3 for the high-order QD problem in this test.

The scalar flux at x = 4cm along the discontinuous media is shown in Fig. 2.4-Fig. 2.9 for

all possible combinations of interface conditions (WC or WF) and meshes (Left, Right, and Center

Refinement), with single-level meshes which use standard interface conditions (Std) for comparison.

In the figures, refined meshes have the same symbol (e.g. triangle) as the single-level orthogonal

56



www.manaraa.com

mesh they are created from. The number of cells is reported to easily compare various meshes. The

scalar flux along the midplane, y = 2cm is shown in Fig. 2.10 and around the peak in Fig. 2.11 on

a 64 × 64 orthogonal mesh, comparing the LOQD solutions to bilinear discontinuous (BLD) and

short characteristics with subcell balances (SCSB) transport discretizations.

(a) Exx (b) Eyy

(c) Exy (d) φ

Figure 2.3: Discontinuous Media Test: QD Factors and fine-mesh scalar flux solution.
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Figure 2.4: Discontinuous Media Test: Scalar flux along centerline x = 4cm for Strong Current /
Weak Scalar Flux (WF) conditions for meshes with left refinement.
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Figure 2.5: Discontinuous Media Test: Scalar flux along centerline x = 4cm for Strong Scalar Flux
/ Weak Current (WC) conditions for meshes with left refinement.
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Figure 2.6: Discontinuous Media Test: Scalar flux along centerline x = 4cm for Strong Current /
Weak Scalar Flux (WF) conditions for meshes with right refinement.
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Figure 2.7: Discontinuous Media Test: Scalar flux along centerline x = 4cm for Strong Scalar Flux
/ Weak Current (WC) conditions for meshes with right refinement.
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Figure 2.8: Discontinuous Media Test: The scalar flux along centerline x = 4cm for Strong Current
/ Weak Scalar Flux (WF) conditions for meshes with center refinement.
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Figure 2.9: Discontinuous Media Test: The scalar flux along centerline x = 4cm for Strong Scalar
Flux / Weak Current (WC) conditions for meshes with center refinement.
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Figure 2.10: Discontinuous Media Test: Scalar flux along midplane, y = 2cm with 64×64 orthogonal
mesh.
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Figure 2.11: Discontinuous Media Test: Scalar flux around peak 2cm ≤ x ≤ 3cm with 64 × 64
orthogonal mesh.
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2.3.1.2 Analysis

First let us compare the various interface conditions on hanging-node meshes. On left-

refined meshes as in Fig. 2.2(a) the scalar flux along the material discontinuity at x = 4cm in

Fig. 2.4 and Fig. 2.5 shows that left refinement leads to no improvement in the solution. One can

also see the weak scalar flux conditions (WF) in Fig. 2.4 lead to scalar fluxes on interfaces that have

a linear shape whereas the weak current conditions (WC) shown in Fig. 2.5 lead to flat scalar flux

distributions for each interface.

On right-refined meshes, where cells are refined in the optically thick right-side of the

problem, one sees reduction in error from refinement up to the finest mesh shown in Fig. 2.6 and

Fig. 2.7. Specifically, the right-refined mesh has error close to the error on a mesh with refinement of

both sides. On the finest meshes shown, the coarseness of the source region is probably limiting the

accuracy and would need to be refined as well. Because there is no scattering, information strictly

propagates from the source on the left, through coarse cells across the interface to finer cells. Under

these conditions (information propagating from coarse to fine cells), a much flatter representation

of the scalar flux is observed than in the left-refined case, so the WF and WC conditions do not

show much difference.

Finally, we consider center-refined meshes, where cells are refined along the material dis-

continuity, but not in the source region. Solutions on these meshes, as shown in Fig. 2.8 and

Fig. 2.9 are similar to the right-refined meshes, with advantage of refinement shown for the two

coarser meshes. Away from hanging-node interfaces, both the WF and WC conditions appear ap-

propriate. Overall, the Strong Current / Weak Scalar Flux (WF) conditions of Eq. (2.8a) lead to

much better shapes of the scalar flux for the types of refinements tested.
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In Fig. 2.10, the BLD solution is shown to underapproximate the attenuation in the

strongly absorbing region. Approximating strong attenuation on coarse meshes is difficult for a

linear discontinuous method, but is a task where characteristic methods excel. The LOQD solu-

tion, with factors calculated from SCV, also underapproximates the attenuation, showing close to

exp(−10x) attenuation—which would occur in a slab with uniform incident flux and no scattering.

As opposed to a slab, this problem is finite in the ±y directions, which means there is leakage and

the scalar flux should decrease faster than exp(−10x). Point-wise long characteristics calculations

(which are exact with no scattering) confirm that the SCSB solution decreases at the correct rate.

All methods perform similarly in the peak region Fig. 2.11.

2.3.2 Discontinuous Source Test

This test has a discontinuous external source on a 5cm × 3cm rectangular domain with

homogeneous material properties, σt = 1cm−1 with scattering, σs = 0.5cm−1. There are vacuum

BC on all sides, φIN = JIN = 0. The external source on the left is qext = 0.5n/cm3s for x ≤ 2.5cm

and elsewhere qext = 0. We present results for a variety of meshes: the mesh naming scheme is as

follows: single-level orthogonal is so; single-level perturbed (by randomizations) is sp; unstructured,

orthogonal hanging-node is uoL and uoR for left and right refinement, respectively; and upL and

upR are the perturbed versions of uoL and upL, respectively. Fig. 2.12 shows the meshes derived

from a base 8 × 8 mesh. Mesh randomizations are 20%. The scalar flux is converged to a relative

tolerance of ǫφ = 10−8. With this test, we compare three FV LOQD discretizations: the GGK and

AK from literature, and our new JM discretization. For the transport discretization, we use a short

characteristics discretization with unknowns at vertices and min/max monotonization (SCV)
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(a) so (b) uoL

(c) uoR (d) sp

(e) upL (f) upR

Figure 2.12: Discontinuous Source Test: Meshes derived from a base 8 × 8 mesh.
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2.3.2.1 Data

For each of the three FV variants (GGK, AK, and JM), we calculate numerical convergence

orders for the left-side scalar flux via Eq. (2.27a), right-side scalar flux via Eq. (2.27b), and average

exiting current at the top right corner via Eq. (2.27c).

φleft =

∫ 2.5

0.0
dx

∫ 3.0

0.0
dy φ(x, y) (2.27a)

φright =

∫ 5.0

2.5
dx

∫ 3.0

0.0
dy φ(x, y) (2.27b)

Jur =
1

4.0

(∫ 5.0

2.5
dx J(x, 3.0) +

∫ 3.0

1.5
dy J(5.0, y)

)

(2.27c)

The results for φleft, φright, and Jur are shown for various meshes in Table 2.4, Table 2.5, and

Table 2.6, respectively. For hanging-node meshes, the mean cell-widths for the left and right sides

are shown as hL/hR. The respective convergence orders are presented in Table 2.3, calculated

from the Aitken process as in Eq. (1.23). The scalar flux at the discontinuous source interface at

x = 2.5cm is shown in Fig. 2.13, Fig. 2.14, and Fig. 2.15.

Table 2.3: Discontinuous Source Test: Numerical convergence orders.

GGK AK JM

Mesh Jur φleft φright Jur φleft φright Jur φleft φright
so 1.9 2.3 2.3 2.1 2.3 2.2 1.9 2.3 2.3

sp ∗ 1.2 1.3 2.4 0.7 0.5 2.8 1.9 1.9

uoL 1.5 1.9 2.0 1.8 2.0 1.9 1.5 1.9 2.0

uoR 1.4 2.2 1.3 1.6 2.2 2.2 1.4 2.2 1.3

upL 0.8 1.5 1.3 1.3 2.6 1.9 2.0 1.4 1.4

upR 0.9 2.2 2.3 1.2 2.8 2.2 1.3 1.8 1.8

∗ Aitken process failed
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Table 2.4: Discontinuous Source Test: Results for φleft.

Mesh Type h(cm) GGK AK JM

so

1.936 9.905 10.097 9.905
0.968 8.909 9.118 8.909
0.484 8.413 8.564 8.413
0.242 8.266 8.396 8.266
0.121 8.231 8.356 8.231
0.061 8.224 8.347 8.224

sp

1.936 9.905 10.097 9.905
0.968 8.887 9.132 8.912
0.484 8.382 8.531 8.447
0.242 8.184 8.290 8.284
0.121 8.129 8.249 8.233
0.061 8.105 8.223 8.223

uoL

0.968/1.936 9.105 9.374 9.105
0.484/0.968 8.515 8.692 8.515
0.242/0.484 8.304 8.442 8.304
0.121/0.242 8.242 8.369 8.242
0.061/0.121 8.226 8.350 8.226

uoR

1.936/0.968 9.751 9.912 9.751
0.968/0.484 8.826 9.011 8.826
0.468/0.242 8.376 8.517 8.376
0.242/0.121 8.254 8.381 8.254
0.121/0.061 8.228 8.353 8.228

upL

0.968/1.936 9.105 9.374 9.105
0.484/0.968 8.488 8.690 8.512
0.242/0.484 8.283 8.394 8.326
0.121/0.242 8.201 8.256 8.254
0.061/0.121 8.171 8.232 8.229

upR

1.936/0.968 9.751 9.912 9.751
0.968/0.484 8.820 9.031 8.833
0.468/0.242 8.352 8.483 8.395
0.242/0.121 8.191 8.278 8.264
0.121/0.061 8.156 8.250 8.228
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Table 2.5: Discontinuous Source Test: Results for φright.

Mesh Type h(cm) GGK AK JM

so

1.936 0.593 0.612 0.593
0.968 0.893 0.903 0.893
0.484 1.100 1.124 1.100
0.242 1.173 1.205 1.173
0.121 1.192 1.227 1.192
0.061 1.195 1.231 1.195

sp

1.936 0.593 0.612 0.593
0.968 0.904 0.892 0.914
0.484 1.110 1.134 1.076
0.242 1.210 1.259 1.157
0.121 1.242 1.291 1.186
0.061 1.255 1.314 1.194

uoL

0.968/1.936 0.713 0.640 0.713
0.484/0.968 0.996 0.986 0.996
0.242/0.484 1.135 1.155 1.135
0.121/0.242 1.181 1.213 1.181
0.061/0.121 1.193 1.228 1.193

uoR

1.936/0.968 0.736 0.802 0.736
0.968/0.484 0.984 1.018 0.984
0.468/0.242 1.139 1.172 1.139
0.242/0.121 1.185 1.219 1.185
0.121/0.061 1.194 1.230 1.194

upL

0.968/1.936 0.713 0.640 0.713
0.484/0.968 1.016 0.987 1.022
0.242/0.484 1.145 1.170 1.118
0.121/0.242 1.205 1.264 1.169
0.061/0.121 1.228 1.289 1.188

upR

1.936/0.968 0.736 0.802 0.736
0.968/0.484 0.981 1.001 0.986
0.468/0.242 1.144 1.184 1.126
0.242/0.121 1.209 1.273 1.178
0.121/0.061 1.222 1.293 1.192
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Table 2.6: Discontinuous Source Test: Results for Jur.

Mesh Type h(cm) GGK AK JM

so

1.936 0.02237 0.01436 0.02237
0.968 0.02705 0.01884 0.02705
0.484 0.02998 0.02198 0.02998
0.242 0.03141 0.02349 0.03141
0.121 0.03194 0.02398 0.03194
0.061 0.03209 0.02409 0.03209

sp

1.936 0.02237 0.01436 0.02237
0.968 0.02787 0.01804 0.02574
0.484 0.03077 0.02258 0.02872
0.242 0.03283 0.02545 0.03124
0.121 0.03410 0.02660 0.03205
0.061 0.03408 0.02682 0.03216

uoL

0.968/1.936 0.02275 0.01474 0.02275
0.484/0.968 0.02850 0.02058 0.02850
0.242/0.484 0.03071 0.02282 0.03071
0.121/0.242 0.03167 0.02378 0.03167
0.061/0.121 0.03201 0.02405 0.03201

uoR

1.936/0.968 0.02610 0.01873 0.02610
0.968/0.484 0.02829 0.02071 0.02829
0.468/0.242 0.03044 0.02274 0.03044
0.242/0.121 0.03155 0.02368 0.03155
0.121/0.061 0.03197 0.02400 0.03197

upL

0.968/1.936 0.02275 0.01474 0.02275
0.484/0.968 0.02926 0.01992 0.02733
0.242/0.484 0.03138 0.02340 0.02959
0.121/0.242 0.03275 0.02572 0.03156
0.061/0.121 0.03356 0.02664 0.03203

upR

1.936/0.968 0.02610 0.01873 0.02610
0.968/0.484 0.02888 0.01953 0.02807
0.468/0.242 0.03086 0.02310 0.03020
0.242/0.121 0.03229 0.02549 0.03150
0.121/0.061 0.03304 0.02657 0.03203
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Figure 2.13: Discontinuous Source Test: Face-average scalar fluxes along center interface x = 2.5cm
for GGK FV discretization, denoted “orig”.
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Figure 2.14: Discontinuous Source Test: Face-average scalar fluxes along center interface x = 2.5cm
for AK FV discretization, denoted “ak”.
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Figure 2.15: Discontinuous Source Test: Face-average scalar fluxes along center interface x = 2.5cm
for JM FV discretization, denoted “morel”.
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2.3.2.2 Analysis

All discretizations behave well on the single-level orthogonal (so) meshes, exhibiting

second-order convergence, see Table 2.3. The orthogonal hanging-node uoL and uoR meshes also

exhibit second-order convergence of the scalar flux, except for φright on the uoR mesh. The reason

is most likely related to the fact that information is propagating from left to right, from coarse to

fine cells, and this type of redistribution requires a much smaller h to see asymptotic convergence.

Numerical convergence of the current Jur is approximately O(h1.5), because the interface conditions

are not guaranteed to preserve second-order for the current.

On single-level randomized (sp) meshes, the GKK and AK discretizations exhibit reduced

numerical convergence orders. GGK exhibits orders of 1.2 and 1.3 for the left-side and right-side

scalar fluxes, respectively. AK exhibits 0.7 and 0.9. Our JM discretization exhibits numerical

convergence orders of 1.9 and 1.9.

Comparing the discretizations qualitatively by looking at Fig. 2.13, Fig. 2.14, and Fig. 2.15,

one sees that our new JM discretization exhibits much less deviation about the orthogonal solution

than either the AK or GGK on the coarse meshes shown. Finally, consider the actual accuracy

(not order) displayed in the results in Table 2.4, Table 2.5, and Table 2.6. Compare practically any

orthogonal scalar flux result on the finest mesh for orthogonal and randomized meshes. With our

JM discretization, the relative error is less than 0.1%. With the GGK and AK, scalar fluxes may

be different by up to 10%. The AK discretization produces currents which differ from the GGK

and JM currents by up to 25%.
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Figure 2.16: Analytic Hump Test: 32 × 32 logically-rectangular mesh with 20% randomizations of
vertices.

2.3.3 Analytic Hump Test

This test uses manufactured solutions on a 1cm × 1cm domain with σt = 1cm−1 and

scattering σs = 0.5cm−1. The boundary conditions are vacuum, φIN = JIN = 0. The exact

solution is

φexact(x, y) = 5 − tanh

[

5

(

x− 1

2

)2

+ 5

(

y − 1

2

)2
]

, (2.28)

with QD factors specified as
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3
+

1

3

(
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2

)2

+
1

3

(

y − 1
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(
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)

. (2.29c)
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Using Eq. (2.28) and Eq. (2.29) one can determine the analytic current ~Jexact(x, y) by the first mo-

ment equations Eq. (1.4b) and the analytic boundary factor C by definition Eq. (1.5). The analytic

source qexact(x, y) is then determined by the balance equation Eq. (1.4a). We consider orthogonal

and randomized N ×N logically rectangular meshes in this test, where N = 2, 4, 8, 16, 32, 64 (see

sample mesh in Fig. 2.16.) Randomized meshes have 20% perturbations of vertices. Because this

is an analytic test, no high-order transport method is needed.

2.3.3.1 Data

The integral error over the 1cm × 1cm domain is calculated for the scalar flux and the

integral error over the upper right corner for the exiting current,

∆φdom =

∫ 1

0

∫ 1

0
[φexact(x, y) − φ(x, y)] dxdy,

∆Jur =

∫ 1.0

0.5
[Jx,exact(1, y) − Jx(1, y)] dy +

∫ 1.0

0.5
[Jy,exact(x, 1) − Jy(x, 1)] dx

for the GGK, AK, and JM discretizations in Table 2.7 and Table 2.8. High-precision numerical

integration is used to calculate the integrals of the exact solutions,

∫ 1

0

∫ 1

0
φexact(x, y) dxdy = 4.405008591,

∫ 1.0

0.5
Jx,exact(1, y) dy +

∫ 1.0

0.5
Jy,exact(x, 1) dx = 0.9903481227.
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We also compare cell-average scalar flux solutions in the following norms,

‖φcexact − φc‖∞ = max
c

|φcexact − φc| ,

‖φcexact − φc‖ℓ1 =
∑

c
V c |φcexact − φc| ,

‖φcexact − φc‖ℓ2 =
√

∑

c
V c (φcexact − φc)2,

‖φcexact − φc‖rel. ℓ1 = 1
NC

∑

c

∣

∣

∣
1 − φc

φc
exact

∣

∣

∣
,

‖φcexact − φc‖rel.∞ = max
c

∣

∣

∣
1 − φc

φc
exact

∣

∣

∣
,

for the GGK, AK, and JM discretizations in tables Table 2.9, Table 2.10, and Table 2.11, respec-

tively.

Table 2.7: Analytic Hump Test: Integral error in the scalar flux, ∆φdom.

∆φdom
GGK AK JM

1/h Ortho. Rand. 20% Ortho. Rand. 20% Ortho. Rand. 20%

2 -1.8E-1 -1.8E-1 -1.5E-1 -1.5E-1 -1.8E-1 -1.8E-1

4 -5.0E-2 -5.0E-2 -2.0E-2 -2.2E-2 -5.0E-2 -5.2E-2

8 -1.3E-2 -1.2E-2 1.5E-2 1.2E-2 -1.3E-2 -1.4E-2

16 -3.3E-3 -1.2E-3 2.4E-2 2.8E-2 -3.3E-3 -3.2E-3

32 -8.3E-4 1.4E-3 2.6E-2 3.0E-2 -8.3E-4 -8.1E-4

64 -2.1E-4 2.1E-3 2.7E-2 3.1E-2 -2.1E-4 -2.0E-4

Order 2.0 * * * 2.0 2.0

∗ Order less than zero
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(a) scalar flux

(b) relative error

Figure 2.17: Analytic Hump Test: Scalar flux on the 64 × 64 randomized mesh (a) and relative
errors (b) for the GGK discretization.
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(a) scalar flux

(b) relative error

Figure 2.18: Analytic Hump Test: Scalar flux on the 64 × 64 randomized mesh (a) and relative
errors (b) for the AK discretization.
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(a) scalar flux

(b) relative error

Figure 2.19: Analytic Hump Test: Scalar flux on the 64 × 64 randomized mesh (a) and relative
errors (b) for the JM discretization.
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Table 2.8: Analytic Hump Test: Integral error in the exiting current, ∆Jur.

∆Jur
GGK AK JM

1/h Ortho. Rand. 20% Ortho. Rand. 20% Ortho. Rand. 20%

2 2.3E-2 2.3E-2 1.9E-2 1.9E-2 2.3E-2 2.3E-2

4 6.3E-3 1.1E-2 2.5E-3 1.4E-2 6.3E-3 1.1E-2

8 1.6E-3 1.0E-3 -1.9E-3 -5.6E-4 1.6E-3 1.9E-3

16 4.1E-4 -3.6E-4 -3.0E-3 -4.4E-3 4.1E-4 4.6E-4

32 1.0E-4 -1.3E-4 -3.3E-3 -3.5E-3 1.0E-4 8.9E-5

64 2.6E-5 -2.0E-4 -3.4E-3 -3.5E-3 2.6E-5 1.8E-5

Order 2.0 * * * 2.0 2.3

∗ Order less than zero

Table 2.9: Analytic Hump Test: Error norms of the GGK cell-average scalar flux, φc.

Mesh 1/h ∞ ℓ1 ℓ2 rel. 1 rel. ∞

Ortho.

2 1.84E-1 1.84E-1 1.84E-1 4.167% 4.167%
4 1.22E-1 5.00E-2 6.54E-2 1.090% 2.552%
8 3.45E-2 1.32E-2 1.69E-2 0.286% 0.698%
16 8.86E-3 3.32E-3 4.25E-3 0.072% 0.178%
32 2.23E-3 8.32E-4 1.06E-3 0.018% 0.045%
64 5.58E-4 2.08E-4 2.66E-4 0.005% 0.011%

Rand.
20%

2 1.84E-1 1.84E-1 1.84E-1 4.167% 4.167%
4 1.75E-1 5.15E-2 7.48E-2 1.075% 3.661%
8 5.45E-2 1.92E-2 2.37E-2 0.426% 1.182%
16 3.29E-2 9.27E-3 1.13E-2 0.214% 0.789%
32 2.04E-2 5.39E-3 6.58E-3 0.125% 0.502%
64 1.28E-2 3.92E-3 4.75E-3 0.088% 0.293%
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Table 2.10: Analytic Hump Test: Error norms of the AK cell-average scalar flux, φc.

Mesh 1/h ∞ ℓ1 ℓ2 rel. 1 rel. ∞

Ortho.

2 1.53E-1 1.53E-1 1.53E-1 3.464% 3.464%
4 5.26E-2 2.21E-2 3.09E-2 0.489% 1.096%
8 4.48E-2 2.68E-2 2.91E-2 0.608% 1.107%
16 5.31E-2 3.50E-2 3.86E-2 0.783% 1.198%
32 5.84E-2 3.72E-2 4.11E-2 0.830% 1.233%
64 5.97E-2 3.77E-2 4.18E-2 0.841% 1.257%

Rand.
20%

2 1.53E-1 1.53E-1 1.53E-1 3.464% 3.464%
4 1.18E-1 3.61E-2 4.95E-2 0.783% 2.467%
8 7.86E-2 2.60E-2 3.08E-2 0.620% 1.946%
16 8.38E-2 3.98E-2 4.51E-2 0.899% 1.760%
32 7.45E-2 4.14E-2 4.62E-2 0.925% 1.590%
64 7.27E-2 4.18E-2 4.67E-2 0.930% 1.524%

Table 2.11: Analytic Hump Test: Error norms of the JM cell-average scalar flux, φc.

Mesh 1/h ∞ ℓ1 ℓ2 rel. 1 rel. ∞

Ortho.

2 1.84E-1 1.84E-1 1.84E-1 4.167% 4.167%
4 1.22E-1 5.00E-2 6.54E-2 1.090% 2.552%
8 3.45E-2 1.32E-2 1.69E-2 0.286% 0.698%
16 8.86E-3 3.32E-3 4.25E-3 0.072% 0.178%
32 2.23E-3 8.32E-4 1.06E-3 0.018% 0.045%
64 5.58E-4 2.08E-4 2.66E-4 0.005% 0.011%

Rand.
20%

2 1.84E-1 1.84E-1 1.84E-1 4.167% 4.167%
4 1.63E-1 5.24E-2 7.34E-2 1.064% 3.397%
8 6.88E-2 1.47E-2 2.12E-2 0.293% 1.436%
16 1.76E-2 3.40E-3 4.63E-3 0.069% 0.359%
32 4.23E-3 8.79E-4 1.22E-3 0.017% 0.088%
64 1.29E-3 2.20E-4 3.02E-4 0.004% 0.026%
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2.3.3.2 Analysis

This test is different from previous tests because the analytic solution is known and we can

directly calculate the numerical convergence order via Eq. (1.21) instead of using the Aitken process.

This test shows that the JM discretization is far superior to the GGK and AK discretizations on

randomized meshes, having errors an order of magnitude lower than the GGK discretization and

two orders of magnitude lower than the AK discretization, by both the integral errors in Table 2.7

and Table 2.8 and the variety of norms presented for the JM discretization in Table 2.11 compared

to GGK in Table 2.9 and AK in Table 2.10.

2.3.4 Analytic Peak Test

Figure 2.20: Analytic Peak Test: Randomized hanging-node mesh with h = 1
64cm.

This test is similar to the last “Analytic Hump Test”, the domain is 1cm × 1cm with

σt = 1cm−1, scattering σs = 0.5cm−1, and vacuum BC, φIN = JIN = 0. However, the analytic

solution has a much sharper peak (see Fig. 2.21),

φexact(x, y) = 5 − tanh

[

100

(

x− 1

2

)2

+ 100

(

y − 1

2

)2
]

, (2.30)
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due to the “100” factor inside tanh. We consider logically rectangular meshes as in the previous

test as well as hanging-node meshes which have 3 levels of refinement about the central region as

in Fig. 2.20. We refine the square region 0.25cm ≤ x, y ≤ 0.75cm, and then refine again a smaller

square region 0.375cm ≤ x, y ≤ 0.625cm. Starting with an N × N mesh, this type of refinement

leads to a 5.5 times increase in number of cells. Because this is an analytic test, no high-order

transport method is needed.

Figure 2.21: Analytic Peak Test: scalar flux solution φexact(x, y).

2.3.4.1 Data

Table 2.12, Table 2.13, and Table 2.14, show ℓ2 error norms of the scalar flux on logically

rectangular meshes for the GGK, AK, and JM LOQD discretizations, respectively. The ℓ2 error

norm of the scalar flux on hanging-node meshes in Table 2.15, Table 2.16, and Table 2.17, for the

GGK, AK, and JM LOQD discretizations, respectively. The characteristic cell-width h is reported

for that of the smallest cells in the mesh, i.e. in the center region for hanging-node meshes. The
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scalar flux and relative error on 64 × 64 randomized meshes are shown in Fig. 2.22, Fig. 2.23, and

Fig. 2.24, for the GGK, AK, and JM discretizations, respectively.

Table 2.12: Analytic Peak Test: GGK discretization ℓ2 error norm on logically rectangular meshes.

Ortho. Rand. 20%
NC 1/h ℓ2 err. Order ℓ2 err. Order

4 2 2.53E-1 - 2.53E-1 -

16 4 6.18E-2 2.0 6.82E-2 1.9

64 8 2.24E-2 1.5 3.71E-2 0.9

256 16 1.36E-2 0.7 1.80E-2 1.0

1024 32 3.12E-3 2.1 6.92E-3 1.4

4096 64 7.80E-4 2.0 4.30E-3 0.7

Table 2.13: Analytic Peak Test: AK discretization ℓ2 error norm on logically rectangular meshes.

Ortho. Rand. 20%
NC 1/h ℓ2 err. Order ℓ2 err. Order

4 2 2.34E-1 - 2.34E-1 -

16 4 5.90E-2 2.0 6.49E-2 1.9

64 8 2.26E-2 1.5 3.42E-2 0.9

256 16 1.30E-2 0.7 1.94E-2 0.8

1024 32 2.68E-3 2.1 7.34E-3 1.4

4096 64 7.29E-4 2.0 4.88E-3 0.6

Table 2.14: Analytic Peak Test: JM discretization ℓ2 error norm on logically rectangular meshes.

Ortho. Rand. 20%
NC 1/h ℓ2 err. Order ℓ2 err. Order

4 2 2.53E-1 - 2.53E-1 -

16 4 6.18E-2 2.3 6.60E-2 1.9

64 8 2.24E-2 2.0 3.13E-2 1.1

256 16 1.36E-2 1.6 1.55E-2 1.0

1024 32 3.12E-3 2.0 2.86E-3 2.4

4096 64 7.80E-4 2.0 8.35E-4 1.8
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Table 2.15: Analytic Peak Test: GGK discretization ℓ2 error norm on hanging-node meshes.

Ortho. Rand. 20%
NC 1/h ℓ2 err. ratio ℓ2 err. ratio

88 16 6.62E-2 - 6.52E-2 -

352 32 1.69E-2 2.0 2.29E-2 1.5

1408 64 4.28E-3 2.0 1.26E-2 0.9

5632 128 1.07E-3 2.0 6.58E-3 0.9

Table 2.16: Analytic Peak Test: AK discretization ℓ2 error norm on hanging-node meshes.

Ortho. Rand. 20%
NC 1/h ℓ2 err. ratio ℓ2 err. ratio

88 16 6.21E-2 - 6.21E-2 -

352 32 1.56E-2 2.0 2.12E-2 1.6

1408 64 3.83E-3 2.0 1.08E-2 1.0

5632 128 1.07E-3 1.8 5.92E-3 0.9

Table 2.17: Analytic Peak Test: JM discretization ℓ2 error norm on hanging-node meshes.

Ortho. Rand. 20%
NC 1/h ℓ2 err. ratio ℓ2 err. ratio

88 16 6.62E-2 - 6.50E-2 -

352 32 1.69E-2 2.0 1.82E-2 1.9

1408 64 4.28E-3 2.0 4.73E-3 2.0

5632 128 1.07E-3 2.0 1.22E-3 2.0
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(a) scalar flux

(b) relative error

Figure 2.22: Analytic Peak Test: Scalar flux on the 64×64 randomized mesh (a) and relative errors
(b) for the GGK discretization.
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(a) scalar flux

(b) relative error

Figure 2.23: Analytic Peak Test: Scalar flux on the 64×64 randomized mesh (a) and relative errors
(b) for the AK discretization.
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(a) scalar flux

(b) relative error

Figure 2.24: Analytic Peak Test: Scalar flux on the 64×64 randomized mesh (a) and relative errors
(b) for the JM discretization.
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2.3.4.2 Analysis

Our new JM discretization performs excellently on this analytic test, exhibiting second-

order convergence in the ℓ2 error norm on logically-rectangular and hanging-node meshes with

random perturbations of vertices. On orthogonal meshes, the error in the ℓ2 norm is similar for all

discretizations tested, see Table 2.12-Table 2.17. On orthogonal meshes, all discretizations (GGK,

AK, and JM) also show second order. However, on randomized meshes, the JM discretization shows

second-order while AK and GGK show first order or less. Comparing error on the finest meshes, the

JM discretization has a factor of 5 less error than GGK or AK. The relative errors in Fig. 2.24(b)

show that our hanging-node meshes lead to much less error in the middle region surrounding the

peak than either the inside or outside regions. Compared to GGK and AK solutions in Fig. 2.22(b)

and Fig. 2.23(b), our JM discretization is clearly superior.

Although we do not adaptively refine meshes, it is easy to guess that adaption around the

peak will lead to better approximation of the solution features, however there is no hanging-node

mesh result which is clearly more efficient (less error per cell) than a logically-rectangular mesh.

That is the coefficient associated with the O(h2) convergence is clearly smaller for the uniformly

refined logically-rectangular meshes, at least in this global error quantity.

2.4 Summary

We have derived a new discretization of the LOQD equations in Eq. (2.20) which uses

a corresponding reciprocal basis as in [89] to represent the tensor divergence in our general FV

framework. We have also determined interface conditions for hanging-node interfaces, Eq. (2.8a),

and for standard interfaces Eq. (2.7) that allow one to solve the LOQD equations on a large variety
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of quadrilateral meshes, without introducing extra unknowns into the system (e.g. polygons) due

to special interfaces. We conclude with the following statements.

1. On orthogonal meshes, the geometric factors reduce our new LOQD discretization to the

GGK FV scheme [24,54].

2. On randomized meshes in 2D Cartesian geometry, the new LOQD discretization has demon-

strated superior accuracy compared to other tested FV discretizations [24,54].

3. Hanging-node interface conditions may be imposed to solve problems on hanging-node meshes

[105].

4. The discretization has a straightforward extension to polygons and polyhedra.

5. In the case of diffusion where the QD tensor is diagonal and equal to 1/3, our discretization

reduces to Jim Morel’s diffusion discretization [89].

89



www.manaraa.com

Chapter 3

QD FACTOR CALCULATION,

SCATTERING SOURCE

REPRESENTATION, AND OTHER

TRANSPORT-RELATED

CONSIDERATIONS

In this chapter we discuss the manner in which to calculate the angular flux, ψ, that is

compatible with our new LOQD FV discretization. Although the transport equation discretizations

are not new, various modifications were necessary, and in an effort to be complete, we discuss them

here. Completely new material in this section is 1) how to calculate the QD factors, E[ψ] and C[ψ]
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from vertex-based data on unstructured meshes and 2) a linear representation of the scattering

source in a cell.

3.1 A Short Characteristics Transport Discretization with Vertex

Unknowns

On orthogonal meshes, a second-order (in space) method may be constructed by parabolic

interpolation within the cell [24], which was used successfully with QD. We seek an appropriate

extension of the orthogonal mesh variant to unstructured meshes of quadrilaterals in order to

calculate face-average and cell-average QD factors, Eαβ [ψ] and C[ψ], for use with our FV LOQD

discretization.

Short characteristics uses the form of the transport equation in Eq. (3.1), shown in 2D

below for convenience,

ψ(s) = ψ0e
−σt

s
sin θ +

1

sin θ

∫ s

0
q(s′)e−σt

s−s′

sin θ ds′, (3.1)

where q(s) is the total source term which includes scattering and external sources. The character-

istics are along lines given by x = Ωxs/ sin θ+x0 and y = Ωys/ sin θ+y0 such that s now represents

the projection of the distance along the characteristic to the xy-plane,

Parabolic interpolation requires three values on the same line, called the interpolation line,

in order to determine the exiting angular flux, see Algorithm 3. We considered three options for

parabolic interpolation within an arbitrary quadrilateral cell (see Fig. 3.1) before deciding on the

diagonal line interpolation.

• Face-Parallel: parallel to the face intersected when travelling in −~Ω direction Fig. 3.1(a), (a
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(a) Face-Parallel (b) Perpendicular (c) Diagonal

Figure 3.1: Parabolic Interpolation: interpolation lines (blue), with characteristics used (red),
outgoing angular flux (magenta arrow), and incoming angular fluxes (red arrows).

natural extension of a short characteristic scheme with linear interpolation [49],

• Perpendicular: perpendicular to the characteristic ray, Fig. 3.1(b), and

• Diagonal: oriented on the diagonal of a quadrilateral cell, Fig. 3.1(c).

3.1.1 Diagonal Interpolation Line

ψv2

~Ω

ψv3

ψv4

ψv1

ψv5

Figure 3.2: Short-characteristics high-order transport discretization on vertices with diagonal in-
terpolation (SCV). For direction ~Ω, solve outgoing ψ (red) from 3 incoming ψ (green), using cell
diagonal (blue).

We use the diagonal interpolation line because it results in all characteristics being com-
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pletely contained within the cell. Obviously, if the cell cross sections, scattering source, and/or

external source are different form its neighbors, additional approximation is introduced by the

face-parallel and perpendicular lines that is not introduced with the diagonal, which on coarse

meshes could lead to considerable approximation error.1 From a computational point of view, the

diagonal interpolation line requires only 2 evaluations of Eq. (3.1) while others require 2 or 3 evalu-

ations. Evaluations of Eq. (3.1) should be minimized because they include fairly costly exponential

evaluations. The computational cell is shown in Fig. 3.2.

3.1.2 Monotonization

As discussed in the Introduction, the angular fluxes used to calculate QD factors must be

monotonic so that derivative terms which involve factors are bounded. Our interpolation is via a

parabola, Zc(ℓ) = aℓ2+bℓ+c, calculated from three point values, which may have an extremum. To

remedy, we use a min/max monotonization, where first we calculate the minimum and maximum

values allowed based on the values used to construct the interpolant,

Y c
min = min(ψvIN1

∗ , ψvIN2
∗ , ψvIN3

∗ ), (3.2)

Y c
max = max(ψvIN1

∗ , ψvIN2
∗ , ψvIN3

∗ ), (3.3)

where the three ψvIN
∗ values are point angular flux values on the interpolation line, determined from

angular fluxes at “incoming” vertices, ψvIN , and Eq. (3.1). The monotonic, parabolic interpolant

1One could use the neighbors’ properties for parts of characteristics that lie outside the cell (see Perpendicular in
Fig. 3.1), but these are extra intersection calculations and as we have mentioned before, we desire a cell-local transport
scheme, requiring only properties of the current cell in the transport sweep to compute the outgoing angular fluxes
from the incoming.

93



www.manaraa.com

Algorithm 3: Our Vertex-based Algorithm.

for each direction ~Ωm do

for each cell c do

for each incoming vertex vIN do

From the incoming vertex vIN , determine the distance svIN

∗
along the

characteristic to the interpolation line at position ℓvIN

∗
.

Determine the interpolation line angular flux, ψvIN

∗
= ψ(svIN

∗
), via Eq. (3.1) with

ψ0 = ψvIN .

end

Use (ℓvIN

∗
, ψvIN

∗
) values along the interpolation line to determine a monotonic

interpolating function Y c(ℓ), where ℓ are local coordinates on the line:

if number of incoming vertices > 2 then

Construct parabolic interpolant from 3 ψvIN

∗
values.

else

Construct linear interpolant from 2 ψvIN

∗
values.

end

for each outgoing vertex vOUT do

Determine the interpolation line point ℓvOUT

∗∗
and the distance svOUT

∗∗
from ℓvOUT

∗∗

to vertex vOUT on the characteristic.

Determine the outgoing angular flux ψvOUT = ψ(svOUT

∗∗
) via Eq. (3.1) with

ψ0 = Y c(ℓvOUT

∗∗
).

end

end

end

94



www.manaraa.com

is evaluated as

Y c(ℓ) =































Y c
min if Zc(ℓ) < Y c

min,

Y c
max if Zc(ℓ) > Y c

max,

Zc(ℓ) otherwise.

(3.4)

Note that the monotonization procedure causes the transport method to become nonlinear.

3.1.3 Determining QD Factors from Vertex-based Characteristics

In order to use vertex-based characteristics transport methods with our FV LOQD dis-

cretization, one must determine face-average and cell-average QD Factors, Eαβ [ψ] and C[ψ], from

angular fluxes at vertices {ψv|v = 1, ..., Nv}. In order to do this, first we calculate the QD factors

at vertices,

Evαβ =

∑

m
wmΩα,mΩβ,mψ

v
m

∑

m
wmψvm

, (3.5)

Cvb =

∑

m∈OUT

wm(~nvb · ~Ωm)ψvb
m

∑

m∈OUT

wmψ
vb
m

. (3.6)

where ψvm is the angular flux at vertex v in direction ~Ωm and vb denotes a boundary vertex. The

summation over m ∈ OUT is the quadrature equivalent of integration over outgoing directions

defined by ~nvb · ~Ωm > 0, where ~nvb is the outward normal at a boundary vertex. The outward

normal is not well-defined for a corner vertex on the boundary, but our FV LOQD discretization

needs only face-average boundary Cfb factors where the outward normal is defined by the face,

~nfb , not the vertex. As a result we define two values for each Cvb on the corner boundary vertices,

associated with the two (possibly) different outward normals for faces.
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3.1.3.1 Face-average QD Factor Calculation from Vertex QD Factors

In order to determine the face-average factors, we employ a simple trapezoid rule on vertex

values. On simple two-vertex faces, v1, v2 ∈ f , this is simply

Efαβ =
1

2
(Ev1αβ + Ev2αβ). (3.7)

On faces with more than two vertices, like on hanging-node meshes, this is simply

Efαβ =
1

Af

∑

v∈f

AvEvαβ , (3.8)

Cf =
1

Af

∑

v∈f

AvCv, (3.9)

where the vertex weighting Av is determined geometrically as per the trapezoid rule. For the

boundary vertices, vb1, bb2 ∈ fb, the Cfb boundary factor is calculated as

Cfb =
1

2
(Cvb1 + Cvb2), (3.10)

where at corner boundary vertices, the appropriate Cvb associated with normal ~nfb is used. All

face-average factor calculation strategies above are valid for both orthogonal and arbitrary meshes.

3.1.3.2 Cell-average QD Factor Calculation from Vertex QD Factors

In order to determine the cell-average factors, we must employ a different strategy on both

orthogonal and arbitrary meshes. On rectangular meshes, this simple approximation is appropriate,

Ecαβ =
1

4
(EBRαβ + ETRαβ + ETLαβ + EBLαβ ), (3.11)

where BR, TR, TL, and BL denote the bottom right, top right, top left, and bottom left vertices of

the rectangle, respectively. On skewed quadrilateral cells and cells with hanging-nodes, we perform
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v1

v2

v3
v4

(a) no hanging nodes

v1

v2

v3
v4

v5

(b) 1 hanging node

v1

v2

v3
v4

v5

v6

(c) 1 hanging node

Figure 3.3: Delaunay triangulations of hanging node cells.

a Delaunay triangulation [67] of the vertices, construct a linear function on each triangle, and

integrate the resulting linear functions over the cell,

Ecαβ =
1

V c

Ntri
∑

t=1

3
∑

n=1

V t,nE
vt,n

αβ , (3.12)

where Ntri is the number of triangles (for a cell with N vertices there are N−2 triangles) and vt,n is

the vertex index of the n-th node of the t-th triangle. The vertex weighting V t,n is dependent on the

triangulation. Sample triangulations are shown in Fig. 3.3. If desired, the vertex weights may be

precalculated and stored for each cell. For orthogonal cells, Eq. (3.12) reduces to the equal-weighted

case of Eq. (3.11).

3.1.4 Difficulties with Vertex-based Characteristics

The short characteristics method described by Algorithm 3 that uses a diagonal interpo-

lation line and min/max monotonization is referred to as SCV. On orthogonal meshes, SCV has

O(h2) truncation error because in each cell the parabolic interpolant has O(h3) truncation error

(see appendix), but characteristics travel through O(1/h) cells in the worst case, so globally the

truncation error is O(h2).
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Preliminary results confirmed O(h2) for the SCV scheme on arbitrary meshes as well.

However, for some problems, we did not observe consistent convergence of O(h2) which led us to

the fact that cells exist in the mesh which, for a particular direction have only one incoming face and

three outgoing faces. This means one must resort to a linear interpolant for these cell/directions.

On the maximally randomized meshes of 30%, approximately 18% of all interpolations are linear.

Thus the method is not O(h2), although it appears so in many tests.

A possible fix is then to add vertices to the centers of faces such that each face has 3 vertex

angular flux values associated with it, and thus a parabolic interpolator may always be constructed

even if there is only one incoming face.

However, with the same number of degrees of freedom, we can use a conservative short

characteristics method with subcell balances (SCSB) which has both vertex and face-average an-

gular flux unknowns. Because the SCSB scheme has face-average angular flux primary unknowns,2

SCSB will generate better face-average and cell-average QD factors for the LOQD equations.

One additonal problem with any short characteristics method that has vertex-based un-

knowns only at corners of cells, is that acute-angled cells may be excluded from the transport

sweep. For example, consider a high aspect-ratio triangle, where the small face is upwind and

the smallest acute angle, θmin, is downwind. If this wedge-shaped triangle has θmin smaller than

the angle between directions in the quadrature set, this cell will be completely excluded from the

transport sweep [51]. With a face-based short characteristic method (or a vertex-based method

that has vertices on faces), it is impossible to exclude cells.

2Cell-average angular fluxes are also defined from the characteristic equations, not from the balance equation, but
are not primary unknowns.
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3.2 A Short Characteristics Method with Subcell Balances

In an effort to ensure parabolic interpolation in all cells, we have developed a short char-

acteristics method which utilizes subcell balances (SCSB). We do not present a full description of

our subcell balance method here. For an overview, see Alg. 4 and Fig. 3.4. For the full derivation

see Appendix A. It is similar in nature to other conservative (multiple-balance) short characteristic

SN transport methods: the Bakirova-Karpov-Mukhina (BKM) method [34,104], split-cell [61], slice

balance [100].

ψv3

~Ω

ψv4

ψv5

ψv1

ψ̄f4

ψ̄f3

ψ̄f1

ψ̄f5

ψv2

ψ̄f2

Figure 3.4: Conservative short-characteristics high-order transport discretization with subcell bal-
ances (SCSB). For direction ~Ω, solve outgoing ψ (red) from 3 incoming ψ (green).

3.2.1 Monotonization

As discussed in the Introduction, the angular fluxes used to calculate QD factors must be

monotonic so that derivative terms which involve factors are bounded. Here, because we have vertex

and face-average angular flux unknowns, we can use a parabolic interpolant with monotonization

by the BKM method [34] which results in a nonlinear, monotonic, C1 continuous, third-order O(h3)
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Algorithm 4: Our Subcell Balance Algorithm.

for each direction ~Ωm do

for each cell c do

for each incoming face fIN do

Use 2 known incoming vertex and 1 face-average angular fluxes ψvIN and ψfIN

to construct a parabolic interpolation of the angular flux on the face, Y fIN (ℓ).

end

With all incoming face distributions Y fIN (ℓ) specified and total source within a cell

known q(~r), characteristics may be used to determine the angular flux at any

position within the cell, Y c(~r).

for each outgoing vertex vOUT do

Calculate outgoing vertex value ψvOUT by evaluating Y c(~r) at each outgoing

vertex.

end

for each outgoing face fOUT do

Calculate outgoing face-average ψfOUT by integrating Y c(~r) over the outgoing

face.

end

Calculate the cell-average ψc by integrating Y c(r) over the cell.

***Note that evaluating the relevant integrals over faces and cells is most easily

accomplished by dividing the cell into angularly-dependent subcells (slices).

end

end
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accurate representation of the angular flux on a face, Y fIN (ℓ), and is thus O(h2) accurate globally.

Basically, if there is an extremum of the parabola Zc(ℓ) = aℓ2 + bℓ + c, which is constructed by

satisfying 2 vertex values and 1 average value on the face, a piecewise (but smooth) interpolator is

comprised of a parabolic part and a constant part. Additional details are provided in Appendix B.

3.2.2 Determining QD Factors from Subcell Balance Characteristics

With SCSB, it is trivial to determine the QD factors at cells and faces from cell-average

and face-average angular fluxes,

Ecαβ =

∑

m
wmΩα,mΩβ,mψ

c
m

∑

m
wmψcm

, (3.13)

Efαβ =

∑

m
wmΩα,mΩβ,mψ

f
m

∑

m
wmψ

f
m

, (3.14)

Cfb =

∑

m∈OUT

wm(~nfb · ~Ωm)ψfb
m

∑

m∈OUT

wmψ
fb
m

. (3.15)

3.3 Error Discussion

Here we investigate the propagation of errors in ψ to errors in E which may impact the

LOQD solution. Consider representing a component of the QD tensor as

Eαβ =
Kαβ

φ
,

where the second-moment is Kαβ =
∫

4π ΩαΩβ ψ dΩ. Now consider representing our approximate

angular flux, ψ = ψ∗ + ∆ψ, where ψ∗ is the exact angular flux. We would like to determine the

resulting error in the QD factor, E = E∗ + ∆E, where the subscripts have been dropped to avoid
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clutter. We begin with the following error representation,

E∗ + ∆E =
K∗ + ∆K

φ∗ + ∆φ
,

and divide top and bottom of the RHS by φ∗, expressing the numerator factor ∆K/φ∗ as (∆K/K)(K/φ∗)

and using the definition E∗ = K∗/φ∗, we get

∆E

E∗
=

(∆K/K∗) − (∆φ/φ∗)

1 + (∆φ/φ∗)
, (3.16)

in terms of relative errors. In the case of small relative error in φ, ∆φ/φ∗ < 1, we can write a series

expansion of the error

∆E

E∗
=

(

∆K

K∗
− ∆φ

φ∗

) ∞
∑

n=0

(

−∆φ

φ∗

)n

. (3.17)

The formulas Eq. (3.17) and Eq. (3.16) illuminate one desirable aspect of the fractional factors: the

relative error in the factor depends on the difference between the relative errors in the second and

zeroeth moments. Thus if ∆K
K∗ and ∆φ

φ∗ are of the same sign, the QD factor E will be more accurate

than either the zeroeth or second moment.

3.4 Scattering Source Representation

A representation of the scattering source must be specified that is compatible with the

low-order problem unknown’s centerings. In our case, we have face-average and cell-average scalar

fluxes, φf and φc, from which we must construct a function of the scalar flux φ̃c(~r) in the cell

to use in the scattering source σs

4π φ̃ for the transport discretization, where the scattering cross-

section σs is assumed constant in the cell. We introduce two approximations for φ̃: the simple flat

approximation,

φ̃c(~r) = φc, (3.18)
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and the linear approximation,

φ̃c(~r) = φc +
1

V c

∑

f∈c

Afφf~nf · (~r − ~r c), (3.19)

where ~r c is the center of gravity of a cell. Eq. (3.19) is a convenient linear representation because

it involves all faces and by definition, integration over any polygonal cell yields the cell-average

φc. With both our SCV and SCSB discretizations, because they are monotonic, positivity of the

angular flux is guaranteed if the scattering source is positive everywhere within a cell.

3.5 Difficulties with Characteristics through Arbitrary Cells

Compared to orthogonal meshes, a characteristics transport solver for randomized meshes

(like SCV or SCSB) must handle a much larger range of optical thicknesses, σt∆s, where ∆s is the

mean subcell width in the direction of particle travel ~Ωm. A representative distribution of subcell

widths is shown in Fig. 3.5. The x-axis is the subcell center coordinates in terms of a coordinate

system centered on the cell with the y-axis aligned with the direction of travel. The y-axis is the

mean subcell width in the direction of travel (proportional to optical thickness), taken as the length

of the line that passes center of subcell center and connects the entering and exiting edges of the

subcell. On orthogonal meshes of rectangular cells, for a particular direction ~Ωm, there are only

3 mean subcell widths. On randomized, single-level quadrilateral meshes there is a distribution

about each of these 3 and subcell widths which do not exist on orthogonal meshes.

Also, the characteristic transport discretization should be valid for all σt, including voids

where σt → 0. The source term for the characteristic equation Eq. (3.1) includes integrals of the

form,
∫ ∆s
0 q(s) exp(−σts) ds. Using a naive integration and flat source q(s) = q0, one obtains

(q0/σt)(1 − exp[−σts]). As σt → 0, the naive result explodes, so one must use an expansion,
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Figure 3.5: Representative distribution of subcell widths for randomized meshes.

exp[−σt∆s] ≈ 1 − σts+ σts
2/2 + ..., and integrate the result. This handling of voids with σt → 0

is straightforward for SCV.

However, for SCSB, the required averaging of Eq. (3.1) over subcells leads to some geo-

metric terms that approach 1/0 for specific orientations of subcells. The most robust way to handle

these integrations is by casting the solutions in terms of polynomial exponential moments [63]. We

use a similar idea as [63] but have found advantage in choosing a different representation which we

describe in Appendix A.1.

Another difficulty with characteristics on arbitrary meshes is grazing angles, where ~nf ·
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~Ωm ≈ 0, that is the outward normal of a face is near-perpendicular to an ordinate direction. There

are no grazing angles on orthogonal meshes because standard quadrature sets do not have directions

that lie on the xyz axes. Grazing angles lead to difficulties constructing 1) the transport sweep cell

ordering and 2) calculating intersections and distances for the characteristics solver. For example,

our robust handling of grazing angles with SCSB leads to no 1/0 cases for characteristics transport

through a square cell along direction (1, 0, 0).
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3.6 Transport Test Problems

In this section, we perform various test problems on the SCV and SCSB transport dis-

cretizations proposed above, without consideration of the LOQD equations.

3.6.1 Pure Attenuation Test

(a) 64 × 16 randomized mesh (b) scalar flux φ

Figure 3.6: Pure Attenuation Test: Example mesh and scalar flux solution φ.

In this test we analyze pure attenuation (no scattering) in a homogeneous medium. The

domain is 4cm × 8cm, the total cross section σt = 1cm−1, scattering ratio c = 0, and there is

a constant, incident angular flux on the bottom of the domain of ψIN = 1n/cm2·s. We choose to

examime orthogonal and 20% randomized meshes with high aspect ratios in the test: the number

of divisions in the x-direction is fixed, Nx = 64. The number of divisions in the y-direction, Ny
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(a) Exx. (b) Exy (c) Eyy

Figure 3.7: Pure Attenuation Test: QD Factors.

is varied. (On orthogonal meshes, Ny = 2Nx leads to square cells.) The S16 level symmetric

quadrature set is used [30]. A sample mesh with Ny = 16 and solution is shown in Fig. 3.6.

3.6.1.1 Data

We look at the scalar flux at the top (exiting side) of the domain, φT , for SCV, SCSB,

bilinear discontinuous (BLD) discretization, and extended step characteristics (ESC). The relative

error in φT compared to a reference long characteristics solution φTref . The relative error is given as

|φT − φTref |/φTref . Without scattering, the vertex-based long characteristics reference solution has

error only due to the quadrature set. We also show our SCSB discretization without monotonization

(SCSBnm).
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Figure 3.8: Pure Attenuation Test: SCV results.

108



www.manaraa.com

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
4.0E−5

6.0E−5

8.0E−5

1.0E−4

1.2E−4

1.4E−4

1.6E−4

1.8E−4

2.0E−4
reference

SCSB Ortho. [ Ny = 8 ]

SCSB Ortho. [ Ny = 16 ]

SCSB Rand. [ Ny = 8 ]

SCSB Rand. [ Ny = 16 ]

x (cm)

S
ca

la
r F

lu
x 

at
 T

op
 B

ou
nd

ar
y 

(n
/c

m
2−

s)

(a) SCSB φT

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1.0E−4

1.0E−3

1.0E−2

1.0E−1

1.0E+0

SCSB Ortho. [ Ny = 8 ]

SCSB Ortho. [ Ny = 16 ]

SCSB Rand. [ Ny = 8 ]

SCSB Rand. [ Ny = 16 ]

x (cm)

R
el

at
iv

e 
E

rr
or

 in
 S

ca
la

r 
F

lu
x 

at
 T

op
 B

ou
nd

ar
y

(b) SCSB relative error

Figure 3.9: Pure Attenuation Test: SCSB results.
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Figure 3.10: Pure Attenuation Test: SCSB without monontization (SCSBnm) results.
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Figure 3.11: Pure Attenuation Test: ESC results.
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Figure 3.12: Pure Attenuation Test: bi-linear discontinous (BLD) results.
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3.6.1.2 Analysis

Ray effects from SN angular treatment lead to an “exact solution” at the top boundary

that resembles a classic impulse problem, thus we may also visually compare how different dis-

cretizations smear (or disperse) the impulse. Because of dispersion and the coarseness of the mesh,

all methods tested show a smooth solution near the edges, where the reference solution show “steps”

due to ray effects and the discontinuity in the angular flux that is present for Dirichlet boundary

conditions that do not agree at corners. In this test, the discontinuity occurs at the bottom left

and right corner vertices, where the incoming angular flux changes from ψIN = 1 at the bottom to

ψIN = 0 on the sides.

In Fig. 3.8, the SCV solution, despite monotonization, shows extreme oscillations on the

randomized mesh with Ny = 8, where the aspect ratio is hy/hx = 16. On the Ny = 16 mesh where

the aspect ratio is 8, the oscillations disappear. No oscillations appear for orthogonal meshes. The

ability of SCV to have such wild oscillations, even on admittedly coarse and poorly conditioned

meshes may preclude it from use for general transport problems on arbitrary meshes. With SCV

relative errors on the Ny = 8 mesh are approximately 10% and on the Ny = 16 mesh are ap-

proximately 1%. To illustrate that even simple tests may lead to complicated QD factors, see

Fig. 3.7.

On the other hand, SCSB in Fig. 3.9 shows virtually no difference between orthogonal

and randomized meshes and none of the oscillations of SCV. The error of SCSB is approximately

a factor of 2 lower than SCV. Without monotonization, SCSBnm shows in Fig. 3.10 drastically

different results from SCSB for both orthogonal and randomized Ny = 8 meshes. Specifically,

with SCSBnm, there is significant dispersion of the impulse and the shape of the impulse is not
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smooth on randomized meshes. On the Ny = 16 meshes, the dispersion phenomena are less

dramatic but still present compared to the SCSB results, where they are completely absent and

smoothness of the impulse is mostly recovered. The relative errors for SCSBnm are approximately

the same as SCV, a factor of 2 higher than in SCSB, where the monotonization is used. It is

apparent from these results that monotonization is very important on randomized meshes, much

more than on orthogonal meshes. On orthogonal meshes, the regularity of points allows simpler local

representations (e.g. interpolation functions) to be adequate approximations of the exponential.

On randomized meshes, a proper representation of an exponential must be produced for many more

orientations of faces. Monotonizations enforce at least one essential property of the exponential

on these local representations, monotonicity. The BKM monotonization, in particular, produces

interpolators which are much closer to exponentials than parabolas.

In Fig. 3.11, ESC is shown with better aspect ratios of 8 and 4 for the Ny = 16 and

Ny = 32 meshes, respectively, so that the solution is on a similar scale to SCV and SCSB. The

solution on the orthogonal Ny = 16 mesh has very high dispersion because of the ESC’s flat flux

approximation. Also, because cells are “long” in the direction of radiation propagation and there

is significant attenuation in a cell, vertical faces transfer too much radiation to outgoing faces. In

this type of attenuation test, vertical faces are a “worst case scenario” for ESC and on randomized

meshes there are fewer vertical faces, thus ESC does quite a bit better on coarser meshes (Ny ≤ 16)

with randomization than without. ESC has large relative errors of about 100% and 50% for the

orthogonal and randomized Ny = 16 meshes, respectively, and about 20% relative error for Ny = 32

meshes.

In Fig. 3.12, BLD is shown with the same aspect ratios as ESC, again so that the solu-
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tion is on a similar scale to SCV and SCSB. BLD shows little difference between orthogonal and

randomized meshes and converges very uniformly to the reference solution, although errors are

considerably larger than SCSB with 30% and 10% approximate relative error on the Ny = 16 and

Ny = 32 meshes, respectively. It may appear from these results that BLD is a good candidate for

QD on arbitrary meshes, exhibiting seemingly monotonic behavior and small differences between

orthogonal and randomized meshes. However, BLD is not monotonic and can produce negative

angular fluxes for problems with strong material discontinuities.

3.6.2 Analytic Transport Test

Here, we perform an analytic test from [108]. The domain is a 1cm × 1cm square with

homogeneous material properties, σt = 1.0cm−1, with scattering σs = 0.5cm−1, and the the exact

angular flux is given as

ψexact(x, y,Ωx,Ωy) = (1 + Ω2
x + Ω2

y)(x
2 − x4)(y2 − y4). (3.20)

The boundary conditions are vacuum, ψIN = 0. (Note this angular flux is zero on the domain

boundary for all directions ~Ω.) The exact scalar flux is given as

φexact(x, y) =
20π

3
x2y2(1 − x2)(1 − y2), (3.21)

shown in Fig. 3.14(a). We use the S12 level symmetric quadrature set. By substituting Eq. (3.20)

into the transport equation of Eq. (1.3), we arrive at anisotropic external source,

qext(x, y,Ωx,Ωy) = α

(

Ωx
∂γ

∂x
+ Ωy

∂γ

∂y

)

+

(

σtα− 5σs
3

)

γ, (3.22)

where α(Ωx,Ωy) = 1 + Ω2
x + Ω2

y and γ(x, y) = (x2 − x4)(y2 − y4). Note that the source may be

negative.
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Table 3.1: Analytic Transport Test: ℓ2 error norm.

Ortho. Rand. 10% Rand. 20% Rand. 30%
1/h ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio

1 2.47E-2 - 2.47E-2 - 2.47E-2 - 2.47E-2 -

2 2.67E-2 0.92 2.59E-2 0.96 2.36E-2 1.05 2.26E-2 1.09

4 4.49E-3 5.95 4.48E-3 5.77 5.17E-3 4.56 6.55E-3 3.46

8 7.47E-4 6.02 7.29E-4 6.15 8.20E-4 6.30 1.12E-3 5.87

16 1.13E-4 6.59 1.03E-4 7.07 1.23E-4 6.65 1.51E-4 7.37

32 1.75E-5 6.47 1.60E-5 6.43 2.26E-5 5.46 3.67E-5 4.13

64 2.88E-6 6.07 2.63E-6 6.09 3.53E-6 6.39 5.63E-6 6.51

3.6.2.1 Data

We present results for the SCSB discretization with linear source representation. Because

LOQD scalar fluxes are not available, the linear scattering source is constructed from high order

scalar fluxes and the transport equation is iteratively solved with SI, which converges in a reasonable

number of iterations because the scattering ratio is only c = 0.5. Table 3.1 shows the ℓ2 error norm

for the scalar flux on orthogonal and 10%, 20%, and 30% randomized meshes. The distribution

of error is shown in Fig. 3.14(b) and Fig. 3.14(c) for a 64 × 64 orthogonal and randomized mesh,

respectively.
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Figure 3.13: Transport Analytic Test: ℓ2 error norm.
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(a) The analytic solution φexact(x, y).

(b) orthogonal (c) randomized

Figure 3.14: Transport Analytic Test: (a) analytic solution and absolute error in cell-averages
|φc − φcexact| for the high-order analytic test on a 64× 64 orthogonal (b) and randomized (c) mesh.
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3.6.2.2 Analysis

This test exhibits numerical convergence between O(h2) and O(h3) with convergence ratios

between 5 and 6 (Ratio = 8 indicates third order), tabulated in Table 3.1 and plotted in Fig. 3.14.

The angular flux convergence in the ℓ2 norm (not shown) exhibits closer to O(h2) convergence, with

convergence ratios of approximately 4.5, so there appears to be a consistent cancellation of errors

which leads to scalar fluxes that are more accurate than angular fluxes. This is not that unusual:

the scalar flux involves weighted summation of angular fluxes over all directions. If the angular

fluxes have error terms with different signs, the error in the scalar flux will be smaller (in a relative

sense.) However, this only affects the coefficient of convergence not, the order. It is also possible

that asymptotic convergence is not yet achieved for this test and the numerical convergence ratios

in are tending toward 4. Even though on the finest mesh, σth ≈ 0.016, cells are still optically thick

in some directions, σth/ sin θ ≈ 0.07 for the smallest sin θ in the S12 quadrature set.

3.7 Summary

We have presented two characteristics discretizations for transport problems on unstruc-

tured meshes, short characteristics on vertices (SCV) and (conservative) short characteristics with

subcell balances (SCSB).

Short characteristics on vertices is not new, but we have developed a way to calculate

face-average and cell-average QD factors from the vertex values that is acceptable for unstructured

meshes. SCV was used as the high-order QD discretization for the tests in Sec. 2.3.2 where

it was shown to produce adequate factors for the LOQD discretization on arbitrary quadrilateral

meshes, including meshes with hanging nodes. Results in this chapter show that SCV can have poor

119



www.manaraa.com

behavior on optically thick, skewed cells with high aspect ratios. Also, SCV was found to be only

O(h) on randomized meshes—for orthogonal meshes it is O(h2). Thus the LOQD discretization

on arbitrary meshes that uses SCV is limited to first-order because the calculated QD factors will

be first-order. However, because of cancellation of errors (see Sec. 3.3), QD factors E[ψ] may have

absolute error that is considerably less than the solutions themselves. This means that the LOQD

solution can numerically exhibit the second-order on finite meshes, even though factors are only

first-order. Another way to think about this is by considering E[ψ] as data for the LOQD problem.

This was exactly the case in Sec. 2.3.2.

We have improved upon SCV with a short characteristics with subcell balances (SCSB).

It has the advantage that it is O(h2) for randomized meshes, permits direct calculations of face-

average and cell-average QD factors, and behaves well even on optically thick, skewed cells with

high aspect ratios. Additionally with SCSB, the variation between problems on orthogonal and

randomized meshes is much smaller than SCV.

We have also developed a linear scattering source representation that may be used with

SCSB (or SCV), for which numerical results will be presented in Chapter 5.

120



www.manaraa.com

Chapter 4

QUASIDIFFUSION SOLVERS

Our FV discretization of the LOQD equations results in a non-symmetric linear system

with matrix order NLOQD = 9NC , where NC is the number of cells in the mesh. In matrix form

we have

Ax = b, (4.1)

where A is the coefficient matrix, b is the RHS, and x is the solution vector of unknowns from the

general finite volume framework described in Chapter 2. Those unknowns are cell-average scalar

fluxes φc, face-average scalar fluxes φf , and face-average normal currents Jf . This chapter focuses

on efficient solution methods for the LOQD matrix equations using iterative methods. We also

present timing results and briefly discuss implementation details for the transport discretizations

described in Chapter 3.

121



www.manaraa.com

4.1 Two Well-structured LOQD Systems

We have determined two unknown/equation orderings that lead to a well-structured

LOQD system, as defined in [91], in the sense that all diagonal entries are non-zero.1 First we

describe a cell-based structure which is organized into blocks and outlying “bands”. Then we de-

scribe an essential structure, which implicitly includes interface conditions and leads to a reduced

number of face-based unknowns.

4.1.1 Cell-based Structure
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Figure 4.1: Global cell-based structure of the LOQD sparse matrix with GGK, AK, and JM dis-
cretizations on a 10 × 10 randomized mesh.

1More specifically, diagonal entries are non-zero for σt > 0. For voids where σt = 0, the continuous LOQD
equations of Eq. (1.4) are singular. In practice, the resultant poor conditioning of the near-singular system allows a
minimum σt ≈ 10−8.
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Figure 4.2: Local cell-based structure of the LOQD sparse matrix with GGK, AK, and JM dis-
cretizations on a 10 × 10 randomized mesh.

Our general FV framework for quadrilateral cells has 1 balance equation and 4 first-

moment equations per cell. Interface conditions plus boundary conditions provide another 4 equa-

tions per cell, leading to a system of order NLOQD = 9NC . We order the solution vector by cell-local

unknowns and arrive at a system which has NC blocks (each 9 × 9) with 4 “bands” due to inter-

face and boundary conditions, as in Fig. 4.1. For logically-rectangular meshes, the interface and

boundary conditions will actually lie on bands for certain cell-orderings. For arbitrary meshes, this

cannot be assured and the interface and boundary condition outliers will have no global pattern.

The local cell-based structure is shown in Fig. 4.2 where the supports of three FV discretizations

on non-orthogonal meshes may be compared. On non-orthogonal meshes, our JM discretization
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has support of all faces in the cell and thus has the largest number of non-zero values per block

with 33 for interior cells. The GGK discretization has a slightly smaller support with 29 and the

AK discretization has 21. Cells which have a face on the boundary have one more non-zero value

per face in the 9 × 9 block.

The key to the cell-based structure is in ordering face-based unknowns to coincide with

interface/boundary and first moment equations. In discussing this, we use the the term “associate

equation X with an unknown Y ”, by which we mean “place equation X so that the coefficient

corresponding to unknown Y is on the diagonal.”

1. For each cell, c, associate the balance equation with φc.

2. For each boundary face fb in cell c,

• associate the boundary condition with Jfb . This way, for reflective boundary conditions

which have Jfb = 0, there is still a nonzero diagonal.

• Then associate the first moment equation with φfb .

3. For each interior face f in cell c,

• associate an interface condition with either φf or Jf , depending on if it is a scalar flux

or current interface condition, respectively.

• Then, associate the first moment equation with the other unknown, taking advantage

of the fact that the first moment equation for face f is guaranteed to have nonzero

coefficients associated with φf and Jf (as long as σt > 0).

As an example, the cell-based structure is shown in Fig. 4.3 and Fig. 4.4, for a 1×1 and 2×1 mesh,

respectively.
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Figure 4.3: Equations and unknown ordering for a 1 × 1 cell-based system with a single cell.
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Figure 4.4: Equations and unknown ordering for a 2 × 1 cell-based system with two cells.
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The cell-based structure must be used with hanging-node meshes unless we are willing to

consider polygonal cells and increase the number of face-based unknowns accordingly.

4.1.2 Essential Structure
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Figure 4.5: Global essential structure of the LOQD sparse matrix .

The essential structure is for meshes which have only standard interfaces (no hanging

nodes), which by definition have 2 faces per interface. On these meshes, it is possible to satisfy

the standard interface conditions implicitly by considering the 2 faces as a single face referenced by

the same global index, cutting the number of interior face unknowns by half. Assuming an N ×N

logically rectangular mesh, the essential structure has order NLOQD = 5N2 + 4N , compared to the

cell-based structure order, NLOQD = 9N2. Thus, in the limit of large meshes, the essential system
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has 5/9 the number of unknowns!

For the essential structure, we order the solution vector by type of unknown,

x = ( φc1 , φc2 , φc3 , ..., φcNC , (4.2)

φf1 , φf2 , φf3 , ..., φfNF , (4.3)

Jf1 , Jf2 , Jf3 , ..., JfNF ). (4.4)

Balance equations are associated with the first NC rows, boundary conditions are associated with

the next NBF rows, and first moment equations are associated with the final 2NF − NBF . This

ordering results in a sparse matrix with structure shown in Fig. 4.5. Although the essential structure

has a reduced unknown count, it has a complicated structure and very large bandwidth because

two adjacent cells share a face with a single global index.

4.1.3 Condition Numbers

To analyze the conditioning of the LOQD system, let us define the condition

κ(A) = ‖A−1‖1‖A‖1,

where we have used the 1-norm of a matrix. The condition number is useful in estimating the

precision of the result of solution of the system of equations. Generally, with a condition number

of κ(A), one can only expect the iterative solution to have precision ǫ κ(A) [85], where ǫ is the

computer’s working precision. Thus, with double precision (approximately 16 digits) a condition

number of κ = 1010 would lead to a maximum of 6 digits of accuracy. On logically rectangularN×N

meshes, we observe the essential structure to have condition numbers that grow as O(h−2). This

is not unusual for 2D systems discretized by finite differences [85], which our difference formulas

127



www.manaraa.com

1.0E+0 1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6
1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+7

Cel. Ortho.

Cel. Rand. 30%

Ess. Ortho.

Ess. Rand. 30%

Cel. Ortho. [w/ Scaling]

Cel. Rand. 30% [w/ Scaling]

LOQD System Order

C
o

n
d

iti
o

n
 N

u
m

b
e

r

Figure 4.6: Condition numbers for the essential (Ess.) LOQD system and cell-based (Cel.) LOQD
system.

of Eq. (2.18) used in the first moment equations in Eq. (2.20b) resemble. On the same tests, we

observe the cell-based structure has condition numbers that grow as O(h−3). The O(h−3) growth

for the cell-based structure is due to the “bands” which always have the value ±1 and lie O(N)

columns from the diagonal blocks. Note, on these logically rectangular systems, h = 1/N . See

Fig. 4.6 for representative condition numbers. The O(h−3) growth for the cell-based structure is
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reduced to O(h−2) by column-scaling, described in Sec. 4.2.1. The condition numbers approach

107 for the cell-based structure on a 64 × 64 mesh, the last data point shown in Fig. 4.6.

4.2 Scaling, Preconditioning, and Solving the LOQD System

Here we investigate the efficient solution of the LOQD systems described in the previ-

ous section. First, we will investigate scaling the relevant equations and unknowns to lower the

condition number. Then we will investigate Krylov solvers for the iterative solution. Finally, we

will investigate preconditioning of the equations via incomplete LU factorization-based algebraic

preconditioners (ILU).

4.2.1 Scaling

Scaling is a fairly cheap operation and should be employed solely because cross-section

parameters σt and σa may vary by orders of magnitude in different regions of practical problems.

We investigate both column and row scaling of the linear system Ax = b. Row-scaling calculates

diagonal matrix,

R−1 =
1

|| ~Ai||p
, (4.5)

based on p-norms of each row ~Ai and column-scaling calculates diagonal matrix

C−1 =
1

|| ~Aj ||p
, (4.6)

based on p-norms of each column ~Aj . The resulting scaled system is

Ãx̃ = b̃, (4.7)
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with

Ã = R−1AC−1, (4.8)

x̃ = Cx, (4.9)

b̃ = R−1x. (4.10)

After iterations converge, the original unknowns, x, are recovered via Eq. (4.9).

In our implementation, we use the ∞-norm, p = ∞ and first do column-scaling (which is

equivalent to unknown scaling) and then apply row-scaling to the column-scaled matrix. We use

∞-norms for scaling because it leads to maximum entries of 1 which in turn leads to predictable

tolerances for the incomplete LU (ILU) factorization preconditioners.

As shown in Fig. 4.6, column-scaling reduces the condition number growth for the cell-

based structure from O(h−3) to O(h−2). Additional results for scaling will be deferred until pre-

conditioners are introduced.
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4.2.2 Iterative Solvers

We use iterative methods to solve our LOQD system, as opposed to direct methods.

This is because of the well-known fact that, quoting from [85], “[direct methods] scale poorly with

problem size in terms of operation counts and memory requirements, especially on problems arising

from the discretization of PDEs ... [which] lead to linear systems comprising hundreds of millions

or even billions of equations in as many unknowns. For such problems, iterative methods are the

only option available.” We have used iterative methods (with proper preconditioning) to solve the

sparse LOQD system orders of magnitude faster than sparse direct methods.

We compare the following Krylov methods for nonsymmetric systems: generalized min-

imum residuals (GMRES), transpose-free quasi-minimum residuals (TFQMR), and bi-conjugate

gradients with stabilization (BiCGstab). Fig. 4.7 shows a representative test where BiCGstab,

TFQMR, and GMRES are compared by number of matrix vector multiplies to achieve a 10−7

residual. Fig. 4.8 shows BiCGstab solves the LOQD system of equations fastest, followed closely

by TFQMR, and GMRES with approximately double the runtime. Because the LOQD systems

cannot be solved iteratively without preconditioning, the representative test has row and column

scaling and an ILUD preconditioner with drop tolerance ǫdrop = 0.01, which will be introduced in

the next section. Most tests we performed indicated, as in Fig. 4.8, that BiCGstab was the fastest

solver.
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Figure 4.7: Krylov solver residual vs. matrix-vector multiplies.
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Figure 4.8: Krylov solver residual vs. normalized runtime (normalized by BiCGstab solution time).
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4.2.3 Preconditioning

We consider left-preconditioned system,

M−1Ax = M−1b,

where M−1 is the preconditioning matrix. The general rule for preconditioners is that the pre-

conditioned system should be easy to solve and cheap to apply. There are basically two types

of preconditioners: algebraic and physics-based. Physics-based preconditioners can be useful for

PDEs, where detailed analysis (of perhaps the continuous equations) can reveal an asymptotic

equation or “nearby” PDE that is much easier to solve than the original one [85]. The diffusion

synthetic acceleration (DSA) discussed in Sec. 1.3.1 can be regarded as such a physics-based pre-

conditioner for the transport equation. Other physics-based preconditioners are multigrid (e.g.

see [71]) and preconditioners based on lower order discretizations [85], like transport synthetic ac-

celeration (TSA), also discussed in Sec. 1.3.1. A physics-based diffusion preconditioner may seem

like a good idea for the LOQD system, but solving the diffusion problem with E = 1/3I is only

about 10% cheaper than LOQD!

The alternative algebraic preconditioners are based simply on the system matrix A, and

have the potential to be effective on a wider class of problems, although perhaps less effective than

physics-based preconditioners in certain problems. Various algebraic preconditioners are available,

for example, those based on incomplete factorizations, approximate inverses, and algebraic multi-

grid [85]. We have used the code SPARSKIT [74] to investigate incomplete LU factorizations, as

described in [91].
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4.2.3.1 ILU Preconditioners

We analyze two ILU preconditioners, ILU with dual truncation strategy (ILUT) [91] and

ILU with diagonal compensation (ILUD) [91]. The size of the ILU preconditioner M is controlled

via user-specified parameters designed to limit fill-in.2 The main disadvantage of large fill-in is

increased storage requirements and increased cost per preconditioner matrix multiply.

ILUT has two parameters to controll fill-in: the maximum level of fill, Pfill, and drop

tolerance, ǫdrop. With ILUT, small entries are dropped according to

|Mij | < ǫdrop|| ~Mi||1, (4.11)

where || ~Mi||1 is the 1-norm of the row-vector for row i, ~Mi.

ILUD has a single parameter: the drop tolerance, ǫdrop. Instead of truncating small entries

according to Eq. (4.11), ILUD adds them to the diagonal.3

The advantage of ILUT over ILUD is that the maximum memory used for the precon-

ditioner4 can be explicitly controlled by Pfill, where the definition of Pfill here is the number of

additional entries allowed per row, in M beyond the nonzero entries already in A. With Pfill fixed

and ǫdrop = 0, ILUT retains the largest additional Pfill entries on each row. ILUD cannot guarantee

a preconditioner of a certain size.

2In general, the LU factorization of a general matrix A will be dense (i.e. have fill-in), with a sparsity structure
unlike A. ILU preconditioners have various parameters that limit fill-in.

3The general ILUD algorithm adds αMij to the diagonal, where Mij is a truncated entry. We consider only α = 1
which makes this ILUD similar to modified incomplete Cholesky (MILU) preconditioners [91]

4Note, with ILU preconditioners the preconditioner is M , not M−1, and the preconditioning stage performs a
back solve of My = Ax [85].
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4.2.3.2 Results for Fixed ILU Preconditioners

In our first stage of investigating ILU preconditioners, we discovered the essential structure

of the LOQD system leads to very large fill-in. An effective ILU preconditioner could not be

constructed for the essential structure that did not grow unacceptably large with mesh refinement.

This is probably not suprising considering the bandwidth of the essential structure in Fig. 4.5. The

essential structure may benefit from other preconditioners, but we do not consider it further here

and proceed with only the cell-based structure of Fig. 4.1.

To test preconditioners, we perform a parametrization study with drop tolerance, ǫdrop ∈

{1, 0.5, 0.1, 0.05, 0.01, 0.001, 0}; maximum fill-in, Pfill ∈ {1, 5, 10, 20, 40, 80} (for ILUT only); norm

used for row-scaling, prow ∈ {−, 1,∞}, where − indicates it is not performed; and norm used for

column-scaling, pcol ∈ {1,∞}. This leads to 252 ILUT cases and 42 ILUD cases.

To compare ILU preconditioners, we evaluate the ratio of preconditioner construction time

to system solve time, tprec/tsolv; the condition numbers of the scaled system, κ(Ã); the condition

numbers of the preconditioned system, κ(M−1Ã); the convergence rate 5, R; the ratio of number

of nonzeros in preconditioner to original system, fprec = nnz(M)/nnz(A); and the total runtime

in ms, ttot.

We then filter out poor combinations based on R, fprec, and κ(Ã), specifically R < 0.10,

fprec > 2, κ(M−1Ã) > 105. We show the fastest remaining options, sorted by total runtime ttot.

Data for a simple test with σt = 1, σs = 0.9 is shown in Table 4.1 and Table 4.2 for ILUD and ILUT

5The convergence rate R can be used as a measure of efficiency of the iteration process,

R = log

„

||Ax0 − b||

||Axn − b||

«

1

Nmatvec −Ninit

,

where x0 and xn are the initial and converged solutions, respectively, Nmatvec is the number of matrix-vector multi-
plies, and Ninit is the number of initializations [74].
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Table 4.1: ILUD preconditioning/scaling results for Test 1: σt = 1, σs = 0.9.

ǫdrop prow pcol
tprec

tsolv
κ(Ã) κ(M−1Ã) R fprec ttot(ms)

0.05 ∞ ∞ 0.13 2.9E+03 8.3E+03 0.22 1.04 34

0.01 ∞ ∞ 0.16 2.9E+03 2.3E+03 0.23 1.32 36

0.01 ∞ 1 0.16 3.8E+03 7.9E+03 0.23 1.34 36

0.01 − ∞ 0.16 7.5E+03 2.3E+03 0.24 1.37 36

0.05 − ∞ 0.12 7.5E+03 8.4E+03 0.23 1.08 37

0.05 − 1 0.12 7.5E+03 8.4E+03 0.23 1.08 37

0.05 − ∞ 0.11 3.6E+03 2.6E+04 0.21 1.10 39

0.05 − 1 0.11 3.6E+03 2.6E+04 0.21 1.10 39

Table 4.2: ILUT preconditioning/scaling results for Test 1: σt = 1, σs = 0.9.

Pfill ǫdrop prow pcol
tprec

tsolv
κ(Ã) κ(M−1Ã) R fprec ttot

40 0.05 − ∞ 0.19 7.5E+03 7.3E+03 0.28 1.13 32

80 0.05 ∞ ∞ 0.18 2.9E+03 8.5E+03 0.27 1.08 33

40 0.05 ∞ 1 0.21 2.9E+03 8.5E+03 0.27 1.08 34

40 0.05 − ∞ 0.21 7.5E+03 7.3E+03 0.28 1.13 35

40 0.05 − 1 0.21 3.6E+03 5.3E+03 0.31 1.13 35

80 0.05 − ∞ 0.21 3.6E+03 5.3E+03 0.31 1.13 35

preconditioning, respectively. Data for a simple test with σt = 10, σs = 0 is shown in Table 4.3

and Table 4.4 for ILUD and ILUT preconditioning, respectively. Both tests are on 30% randomized

16 × 16 meshes. ILUD shows less variability with respect to norms choices for scaling and shows

slightly better effectiveness with the ∞-norm. ILUT can be faster and use less memory, although

not substantially so.

Table 4.3: ILUD preconditioning/scaling results for Test 2: σt = 10, σs = 0.

ǫdrop prow pcol
tprec

tsolv
κ(Ã) κ(M−1Ã) R fprec ttot(ms)

0.01 − ∞ 0.57 1.6E+02 3.1E+00 1.16 0.95 11

0.05 1 ∞ 0.37 2.2E+01 9.7E+00 0.86 0.85 11

0.05 1 1 0.37 1.9E+01 1.3E+01 0.88 0.84 11

0.05 ∞ 1 0.37 3.1E+01 6.9E+00 0.86 0.84 11

0.01 − 1 0.57 1.6E+02 3.1E+00 1.16 0.95 11
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Table 4.4: ILUT preconditioning/scaling results for Test 2: σt = 10, σs = 0.

Pfill ǫdrop prow pcol
tprec

tsolv
κ(Ã) κ(M−1Ã) R fprec ttot

40 0.01 1 1 0.80 6.6E+01 1.4E+00 0.94 0.51 9

10 0.10 ∞ ∞ 0.57 6.6E+01 7.1E+00 0.99 0.71 11

10 0.05 ∞ 1 0.57 3.1E+01 4.2E+00 1.25 0.85 11

5 0.10 ∞ ∞ 0.37 6.6E+01 8.9E+00 0.86 0.70 11

20 0.50 ∞ ∞ 0.22 3.1E+01 1.7E+01 3.08 0.42 11

40 0.50 1 1 0.22 6.6E+01 3.6E+01 0.42 0.28 11

20 0.50 1 1 0.22 6.6E+01 3.6E+01 0.42 0.86 11

4.2.3.3 Adaptive Recalculation Strategy for ILU Preconditioners

Whether ILUT or ILUD is better (and the optimal choice of parameters) is clearly

problem-dependent. In practice, any ILU preconditioner can fail, so we use a simple process to

adaptively recompute the preconditioner if the Krylov iterations diverge or converge slowly [85].

The adaptive strategy is simple. First, we perform Ntest test iterations. If the convergence rate, R,

shows slow convergence, R < Rmin, the ILUD (ILUT) preconditioner is recomputed with decreased

ǫdrop (and increased Pfill). In practice, we use Ntest = 10 test iterations, minimum convergence

rate Rmin = 0.1, and decrease ǫdrop by a factor of 2 and increase Pfill by a factor of 5.

ILUT’s advantage over ILUD is that it can limit the size of the preconditioner, thus we

would prefer to use it, but we have found it sensitive to Pfill. If a proper Pfill can be specified,

usually from experience with a particular problem, ILUT is faster than ILUD and uses less memory.

If a proper Pfill cannot be specified, the ILUT preconditioner will be recalculated many times until

a sufficient Pfill is reached. The two-parameter refinement with ILUT also leads to complications

because we always refine ǫdrop and Pfill simultaneously, so we can get unnecessarily low drop

tolerances.

For this reason, we find ILUD a better option. With a scaled system, ǫdrop = 0.01
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is sufficient to solve many problems. If not, the adaptive strategy usually finds 0.005 or 0.001

acceptable, which typically leads to modest memory requirements of fprec ≈ 1.5.

4.3 QD Solver Runtimes

The LOQD and transport solver times6 are of course problem-dependent, but mostly

because it is unknown a priori how many transport iterations will be required for any given problem.

In terms of a single transport iteration, the amount of time to solve the high-order and LOQD

equations depends mostly on problem size, i.e. the number of unknowns. For most problems, we

see runtimes per transport iteration versus mesh refinement similar to Fig. 4.9, where the High-

order QD solver is by transport sweep with SCSB discretization and the LOQD solver is BiCGstab

with ILUD preconditioning of the JM discretization with cell-based structure. The iterative LOQD

solution shows at least one and usually two orders of magnitude faster run times than sparse

Gaussian elimination (LOQD Direct in the figure). We will remark on the features in Fig. 4.9 in

the next section.

4.3.1 Transport Solver

As seen in Fig. 4.9, SCSB scales linearly with the number of cells NC for most refinements,

as is expected with the transport sweep. With SCSB, there is a jump after NC ≈ 1000 in Fig. 4.9.

This jump in computational cost happens for cells where σth ≈ 1 because of the on-the-fly compu-

tation of the polynomial exponential moments. When the optical thickness is near unity, hundreds

of expansion terms may be required and the cost per cell increases. The cost per cell is relatively

6The computer for all timing tests has a 2.33 GHz Intel Xeon CPU with 4MB cache and 8 GB RAM running Red
Hat Linux. All code was written in Fortran and compiled with the Intel Fortran Compiler 9.1 with standard (O2)
optimizations.
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Figure 4.9: Representative solver runtimes.

constant for σth > 5 and σth < 0.1 and typically less than 10 terms are needed in the expansions.

A conservative estimate of the current SCSB implementation’s unit cost is 20ms per

cell, per direction—SCV is only 50µs per cell-direction. The breakdown in time spent per cell

with SCSB is about: 50% for on-the-fly decomposition of cells into subcells, 45% for on-the-fly

polynomial exponential moment calculation, and 5% for everything else.

Simply tabulating data for the polynomial exponential moments (which are well-behaved

functions of two parameters) could decrease the evaluation cost by up to a factor of 5, thus a

simply-optimized SCSB could have a unit cost of 13ms per cell-direction.
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Preliminary estimates also show that the cell decompositions could be reduced by a factor

of 2 if an explicit mesh structure is used7 or if explicit representations of each cell are stored. The cell

decompositions could also be cached as part of a setup phase, but this is a very large extra memory

cost, quadrilaterals typically have 3 subcells in the decomposition for each direction for a total

of 3NCNM subcells—memory requirements equal to the angular flux which would approximately

double the total memory cost of simulation. We will discuss memory requirements in more detail

shortly.

4.3.2 LOQD Solver

The BiCGstab Krylov iterative solver with ILU preconditioning has been shown an effec-

tive strategy to solve the LOQD system with JM discretization and cell-based system structure. In

particular, the ILUD preconditioner with ǫdrop = 0.01 and adaptive recalculation strategy described

in Sec. 4.2.3.3 leads to a robust algorithm we have used without failure for all tests presented in

this work. Comparing our iterative solution to sparse Gaussian elimination with partial pivoting8,

we see faster runtimes by orders of magnitude in most tests, as seen in Fig. 4.9.

The LOQD solver shows quadratic scaling with number of cells up to about 8000 cells, as

seen in Fig. 4.9, but for finer meshes, large memory management operations (e.g. allocating space

for A and M) leads to a jump in cost, because we explicitly store A and M . Depending on the

7The arbitrary mesh implementation is implicit which means that only the locations of vertices are stored—the
faces are references to vertices and cells are references to faces. The implicit mesh makes mesh construction and
mesh alteration easier as all operations are performed on vertices, with recalculations of affected cells. Properties
of cells and faces that are needed often (e.g. centers) may be cached for a runtime/memory tradeoff. However, in
order to decompose cells as required by our SCSB discretization, we form the explicit representation of a cell: a list
of counter-clockwise ordered (x, y) values.

8We use the highly-regarded, if not somewhat old, code NSPIV [17]. More current and advanced direct codes,
such as SUPERLU [101], gain speedup over NSPIV algorithms by grouping columns which have identical nonzero
structure into “super-nodes”. Matrix operations are then performed on supernodes for substantial savings. It is
unknown whether our cell-based structure can take advantage of supernodes or not.

140



www.manaraa.com

problem, we have seen this behavior return to quadratic scaling or continue with super-quadratic

scaling until memory is exhausted.

4.3.3 Storage Requirements

The limiting storage requirement is for the angular flux, proportional to the number of

cells times number of directions, O(NCNM ). For a N × N mesh and SCSB, the constant is 4, or

4NCNM angular flux unknowns. Considering even a crude quadrature set like S8 level symmetric,

which has 40 directions in 2D, the storage cost of transport is about 160NC . We also use the S12

and S16 level symmetric quadrature sets, which have 84 and 144 directions, respectively.

However, with QD, the angular fluxes ψc, ψf , ψv do not need to be explicitly stored—they

can be accumulated directly into LOQD factors Ec, Ef , Ev and Cf at the end of each direction’s

transport sweep. This could result in huge savings, from 160NC to 8NC , for factor storage plus

one direction’s storage. For research purposes, it is useful to be able to analyze the angular fluxes,

so we store them in our implementation. But in a production code, this should not be the case.

The LOQD system has order 9NC , with an average of 37/9 ≈ 4 nonzeros per row, for a

storage cost of 36NC for the A matrix, with 9NC for x and b. Preconditioning with ILUD can be

accomplished with no more than twice the number of nonzeros in M as A for a total for the LOQD

system of (36 + 9 + 9 + 72)NC = 126NC . With a matrix free implementation, the storage cost for

A can be eliminated, for a 90NC storage cost for the LOQD system.

Eliminating the first-moment LOQD equations by substituting Jf into the balance equa-

tion is not a good strategy for reducing the storage requirements because it only leads to marginally

fewer nonzero entries in A, so the storage cost of A is similar, but storage cost of ILU preconditioner
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M may be greatly increased due to the loss in block structure. The decreased storage cost for x

and b only reduces the total from 126NC to 118NC . There is also additional temporary storage

associated with the Krylov method that is reduced with the balance equation only system.

4.4 Summary

In this chapter we presented a robust and fast iterative solution strategy for the LOQD

system of Chapter 2 with JM discretization consisting of a cell-based structuring of unknowns, row

and column scaling of the resultant system, and ILUD preconditioning with adaptive recalculation

strategy. Conditioning and timing results show the effectiveness of the approach, although it does

result in large memory requirements. This is a standard problem with transport simulations and

we have recommended some options to reduce this cost. We have had success with ILUD precon-

ditioning for these general systems but investigations should continue into other preconditioners,

such as algebraic multigrid or approximate inverse preconditioning. For example, an approximate

inverse could be constructed by inverting each of the 9 × 9 blocks in the cell-based structuring of

the LOQD system.
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Chapter 5

NUMERICAL RESULTS

In this chapter, we present numerical tests of our new LOQD discretization described in

Chapter 2, combined with the transport methods described in Chapter 3.

5.1 Uniform External Source Test

The domain is a 8cm × 8cm square with vacuum boundary conditions, ψIN = 0 with

homogeneous material properties and source, σt = 1cm−1, scattering σs = 0cm−1, and qext =

1cm−1. We examine the behavior of QD with SCSB and SCV transport discretizations and the JM

LOQD discretization. Because there is no scattering, this test converges in one iteration. The S8

level symmetric quadrature set is used.

5.1.1 Data

For this problem, SCSB and ESC on a 1 cell mesh reproduce the exact domain-average

scalar flux, φDexact = 0.87985528755226. A numerical convergence analysis on the domain-average
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(a) Exx. (b) Exy (c) Eyy

Figure 5.1: Uniform External Source Test: QD factors.

scalar flux φD is performed on sequences of N ×N on orthogonal and randomized logically rectan-

gular meshes. Randomized meshes have 30% perturbations of vertices. Sample factors are shown

in Fig. 5.1 globally, and near the bottom left corner in Fig. 5.4. The reduction in error with mesh

refinement is shown in Fig. 5.2 and Fig. 5.3 for orthogonal and randomized meshes, respectively.

The numerical convergence orders corresponding to this data are tabulated in Table 5.1 and Ta-

ble 5.2. The LOQD solution calculated with factors generated from SCSB and SCV is denoted

LOQD[SCSB] and LOQD[SCV], respectively. The solutions from SCSB and ESC are offered for

comparison. (We do not show domain-average scalar fluxes for SCV because it has only vertex-

based unknowns, relying on the LOQD solution for cell-average scalar fluxes.)

Table 5.1: Uniform External Source Test: Convergence orders for φD on orthogonal meshes.

h(cm) LOQD[SCV] ESC LOQD[SCSB] SCSB

1 1.45 0.16 1.42 0.80

1/2 1.94 0.64 1.83 1.61

1/4 2.15 0.61 1.99 2.45

1/8 2.15 0.98 2.02 2.73

1/16 2.13 0.98 2.01 2.87
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Figure 5.2: Uniform External Source Test: Absolute error in φD on orthogonal meshes.

Table 5.2: Uniform External Source Test: Convergence orders for φD on 30% randomized meshes.

h(cm) LOQD[SCV] ESC LOQD[SCSB] SCSB

1 1.27 0.16 1.23 0.51

1/2 1.80 0.64 1.69 1.86

1/4 2.18 0.61 1.85 2.13

1/8 2.70 0.98 1.93 2.61

1/16 2.59 0.98 1.59 3.08

5.1.2 Analysis

The expected O(h) convergence is observed for ESC, which is implemented as SCSB

with flat incoming angular flux (instead of parabolic interpolation with monotonization via the

BKM method.) The SCSB transport method exhibits O(h3) convergence because in this test, near

field effects are much more important than far-field ones and the reduction by one order due to
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Figure 5.3: Uniform External Source Test: Absolute error in φD on 30% randomized meshes.

accumulated discretization error from O(1/h) upwind cells is not yet felt. The SCSB discretization

is very accurate for this type of problem exhibiting 10−8 absolute error on the most refined mesh.

The ESC error is about 10−5. The LOQD[SCSB] and LOQD[SCV] errors are also 10−5, although

it is clear that any refinement will lead to less error than ESC.

On orthogonal meshes the LOQD discretizations exhibit O(h2) convergence. On random-

ized meshes, LOQD[SCSB] shows convergence orders of 1.6 on the finest mesh, LOQD[SCV] shows

2.6. The degraded convergence with LOQD[SCSB] may be due to appearing boundary layers in

LOQD factors, Exx, Eyy, and Exy. Representative boundary layer behavior in Exx near the bottom

left corner of the domain is shown in Fig. 5.4. With highly anisotropic angular fluxes (as exist at

vacuum boundaries and strong material interfaces), the QD factors exhibit large spatial gradients.

The LOQD discretization must resolve tensor divergence terms ~∇ · (φE) = E~∇φ + φ~∇ · E. The
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first E~∇φ term should be easy to resolve in this test but it is easy to imagine that approximating

the second term φ~∇ · E on unstructured meshes is much more difficult. In support of this theory,

if a layer of cells with thickness 1/64cm is placed along the boundary and not perturbed, even

though the interior of the mesh is randomized, LOQD[SCSB] shows convergence order of 1.89 and

LOQD[SCV] shows 2.29, much closer to the expected values of 2.

(a) 16 × 16 (b) 32 × 32

(c) 64 × 64 (d) 128 × 128

Figure 5.4: Uniform Source Test: Exx boundary behavior near corners with SCSB.
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5.2 Diffusion Limit Test

The domain is a 1cm×1cm square with vacuum boundary conditions, ψIN = 0. Diffusion

limit conditions are tested with data σt = 1/ǫ, σa = ǫ, σs = σt − σa, qext = ǫ, where the smallness

parameter ǫ → 0. The scattering ratio is thus c = 1 − ǫ2. A 20 × 20 mesh is tested for ǫ = 0.1 to

0.00001. Note that the case of smallness parameter ǫ = 0.1 does not lead to a diffusion problem,

but we consider it to see better how the transport solution approaches diffusion. We converge the

scalar flux to a relative tolerance of 10−10.

5.2.1 Data

The domain-average scalar fluxes φD are shown vs. smallness parameter ǫ and scattering

ratio c in Table 5.3 for the reference diffusion, Table 5.4 for the high-order QD (with SCSB dis-

cretization), and Table 5.5 for the low-order QD (with JM discretization). The reference diffusion

solution is provided by the GGK/JM LOQD discretization on orthogonal meshes under the diffu-

sive conditions Eαβ = 1/3δαβ and C = 1/2. The scalar flux along a line from the bottom left corner

of the domain to the top right is shown in Fig. 5.5. The number of transport iterations required is

shown in Table 5.6.

Table 5.3: Diffusion Limit Test: φD of the reference diffusion discretization.

Mesh Randomization

ǫ c 0% 10% 20% 30%

0.1 0.99 1.355464E-01 1.355627E-01 1.356090E-01 1.356847E-01

0.01 0.9999 9.755510E-02 9.757647E-02 9.763759E-02 9.773739E-02

0.001 0.999999 9.347169E-02 9.349383E-02 9.355717E-02 9.366046E-02

0.0001 0.99999999 9.305997E-02 9.308219E-02 9.314576E-02 9.324941E-02

0.00001 0.9999999999 9.301875E-02 9.304098E-02 9.310458E-02 9.320827E-02
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Table 5.4: Diffusion Limit Test: φD of the high-order QD (SCSB) discretization.

Mesh Randomization

ǫ c 0% 10% 20% 30%

0.1 0.99 1.399734E-01 1.399809E-01 1.400047E-01 1.400452E-01

0.01 0.9999 9.776839E-02 9.778728E-02 9.783870E-02 9.791591E-02

0.001 0.999999 9.347379E-02 9.349087E-02 9.353300E-02 9.359563E-02

0.0001 0.99999999 9.305917E-02 9.307628E-02 9.311777E-02 9.317911E-02

0.00001 0.9999999999 9.301866E-02 9.303579E-02 9.307732E-02 9.313872E-02

Table 5.5: Diffusion Limit Test: φD of the LOQD (JM) discretization.

Mesh Randomization

ǫ c 0% 10% 20% 30%

0.1 0.99 1.400002E-01 1.400083E-01 1.400341E-01 1.400781E-01

0.01 0.9999 9.777771E-02 9.779652E-02 9.784757E-02 9.792422E-02

0.001 0.999999 9.347535E-02 9.349241E-02 9.353449E-02 9.359704E-02

0.0001 0.99999999 9.305934E-02 9.307644E-02 9.311792E-02 9.317925E-02

0.00001 0.9999999999 9.301868E-02 9.303581E-02 9.307734E-02 9.313873E-02

Table 5.6: Diffusion Limit Test: Number of QD iterations.

Mesh Randomization

ǫ c 0% 10% 20% 30%

0.1 0.99 10 10 11 10

0.01 0.9999 8 8 8 8

0.001 0.999999 5 6 8 10

0.0001 0.99999999 4 6 8 10

0.00001 0.9999999999 3 6 8 10
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Figure 5.5: Diffusion Limit Test: Comparison of LOQD and Diffusion solution for ǫ = 0.0001.

5.2.2 Analysis

For orthogonal 20 × 20 meshes, as ǫ → 0, QD shows a decrease in difference from the

diffusion solution. For randomized meshes, however, QD shows 0.01% relative difference from the

orthogonal. However, even for the reference diffusion solution, as ǫ→ 0, we see a similar difference

of approximately 0.01%. To investigate this effect, we performed 20 calculations in order to estimate

the standard deviation of the mean domain-average scalar fluxes and relative standard deviations,

φ̄D and σD/φ̄D, for a 20 × 20 mesh and 40 × 40 mesh. The results, shown in Table 5.7 for SCSB
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show small standard deviations and a decrease in standard deviation with mesh refinement for all

c.

Table 5.7: Diffusion Limit Test: Randomization error for the high-order QD (SCSB) discretization
on 30% randomized meshes.

φ̄D ± σD/φ̄D

ǫ c 20 × 20 mesh 40 × 40 mesh

0.1 0.99 1.3935E-01 ± 3.8E-04 1.3521E-01 ± 5.7E-05

0.01 0.9999 9.7486E-02 ± 4.0E-04 9.6912E-02 ± 9.8E-05

0.001 0.999999 9.3519E-02 ± 5.6E-04 9.2856E-02 ± 1.2E-04

0.0001 0.99999999 9.3120E-02 ± 6.5E-04 9.2446E-02 ± 1.2E-04

0.00001 0.9999999999 9.3105E-02 ± 6.5E-04 9.2407E-02 ± 1.2E-04
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5.3 Analytic Transport Test, Revisited

We revisit the test in Sec. 3.6.2, but now we add the LOQD problem. The anisotropic

external source from manufactured solutions, Eq. (3.22), requires that the first moment LOQD

equations, Eq. (2.2b) have a source term on the RHS,

qfext,1 = ~qfext,1 · ~nf ,

where ~nf is the outward normal of face f and ~qfext,1 is the first angular moment of the external

source averaged over face f ,

qfext,1 =
1

Af

∫

f
dA ~qext,1(x, y),

where ~qext,1 is the first angular moment of the source, defined as

~qext,1(x, y) =

∫

4π
dΩ ~Ω qext(x, y,Ωx,Ωy).

We use sequences of N ×N logically rectangular meshes and the S12 level symmetric quadrature

set.

5.3.1 Data

High-precision numerical integration is used to approximate the cell-average and face-

average external source terms. The QD factors are not calculated from Eq. (3.20) but from the SCSB

method. The LOQD equations have the JM FV discretization. Fig. 5.6(a) and Fig. 5.6(b) show the

ℓ2 error norms of the high-order QD and LOQD cell-average scalar fluxes, respectively. We show

orthogonal and 30% randomized meshes with both flat and linear scattering source representation

from Eq. (3.18) and Eq. (3.19) respectively. Data is tabulated in Table 5.8, Table 5.9 Table 5.10, and

Table 5.11. .

152



www.manaraa.com

0.010.11
1.0E−05

1.0E−04

1.0E−03

1.0E−02

1.0E−01

1.0E+00
Flat Source [Ortho.]

Flat Source [30% Rand.]

Linear Source [Ortho.]

Linear Source [30% Rand.]

O(h^2)

h (cm)

H
ig

h
 O

rd
e

r 
Q

D
   

l2
−N

o
rm

 E
rr

o
r

(a) high-order QD

0.010.11
1.0E−04

1.0E−03

1.0E−02

1.0E−01

1.0E+00
Flat Source [Ortho.]

Flat Source [30% Rand.]

Linear Source [Ortho.]

Linear Source [30% Rand.]

O(h^2)

h (cm)

L
O

Q
D

 l2
−N

o
rm

 E
rr

o
r

(b) LOQD

Figure 5.6: Analytic Transport Test, Revisited: ℓ2 norm error for (a) the high-order QD and (b)
LOQD scalar flux.
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Table 5.8: Analytic Transport Test, Revisited: ℓ2 error norm for high-order QD scalar flux with
flat scattering source representations.

Ortho. Rand. 10% Rand. 20% Rand. 30%
1/h ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio

8 1.63E-02 3.37 1.66E-02 3.42 1.73E-02 3.44 1.89E-02 3.41

16 4.25E-03 3.83 4.31E-03 3.85 4.57E-03 3.78 5.20E-03 3.63

32 1.07E-03 3.98 1.10E-03 3.93 1.18E-03 3.87 1.35E-03 3.84

64 2.66E-04 4.02 2.72E-04 4.03 2.92E-04 4.04 3.40E-04 3.98

Table 5.9: Analytic Transport Test, Revisited: ℓ2 error norm for high-order QD scalar flux with
linear scattering source representation.

Ortho. Rand. 10% Rand. 20% Rand. 30%
1/h ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio

8 5.04E-03 3.62 5.19E-03 3.55 5.46E-03 3.39 5.81E-03 3.19

16 1.34E-03 3.76 1.35E-03 3.85 1.38E-03 3.95 1.45E-03 4.02

32 3.39E-04 3.95 3.42E-04 3.94 3.54E-04 3.90 3.82E-04 3.79

64 8.63E-05 3.93 8.65E-05 3.96 8.76E-05 4.04 8.80E-05 4.34

Table 5.10: Analytic Transport Test, Revisited: ℓ2 error norm for LOQD scalar flux with flat
scattering source representation.

Ortho. Rand. 10% Rand. 20% Rand. 30%
1/h ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio

8 3.33E-02 3.87 3.41E-02 3.70 3.44E-02 3.80 3.58E-02 3.85

16 8.50E-03 3.92 8.60E-03 3.97 8.60E-03 4.00 8.83E-03 4.05

32 2.13E-03 3.98 2.17E-03 3.96 2.24E-03 3.84 2.35E-03 3.75

64 5.34E-04 4.00 5.48E-04 3.96 5.65E-04 3.96 5.90E-04 3.99

Table 5.11: Analytic Transport Test, Revisited: ℓ2 error norm for LOQD scalar flux with linear
scattering source representation.

Ortho. Rand. 10% Rand. 20% Rand. 30%
1/h ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio ℓ2 err. Ratio

8 3.56E-02 3.78 3.66E-02 3.63 3.86E-02 3.52 4.15E-02 3.46

16 9.08E-03 3.92 9.21E-03 3.98 9.65E-03 4.01 1.04E-02 4.01

32 2.28E-03 3.98 2.33E-03 3.96 2.46E-03 3.91 2.70E-03 3.83

64 5.71E-04 3.99 5.84E-04 3.99 6.20E-04 3.98 6.73E-04 4.01
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(a) The analytic solution φexact(x, y).

(b) orthogonal (c) randomized

Figure 5.7: Transport Analytic Test, Revisited: (a) analytic solution and absolute error in cell-
averages |φc − φcexact| for the high-order transport solution (via SCSB) on a 64× 64 orthogonal (b)
and randomized (c) mesh.
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(a) The analytic solution φexact(x, y).

(b) orthogonal (c) randomized

Figure 5.8: Transport Analytic Test, Revisited: (a) analytic solution and absolute error in cell-
averages |φc−φcexact| for the LOQD solution (via JM) on a 64× 64 orthogonal (b) and randomized
(c) mesh.

156



www.manaraa.com

5.3.2 Analysis

The ℓ2 error norms of the high-order QD and LOQD scalar fluxes exhibit second-order

convergence (Ratio ≈ 4) in Fig. 5.6(a) and Fig. 5.6(b), respectively and in the corresponding tables.

With flat scattering source, the high-order QD ℓ2 error is slightly lower than the LOQD ℓ2 error.

With the linear scattering source, the high-order QD ℓ2 error is a factor of 5 times lower than with

a flat scattering source. The LOQD error shows negligible difference between the two scattering

source representations. Also, with the linear scattering source, the differences between results on

orthogonal and randomized meshes is greatly reduced.

The anisotropic manufactured sources of this analytic test also lead to a nonzero RHS in

the LOQD first-moment equations, which may be negative in many cells. The fact that this posed

no problem for the JM discretization leads us to believe the discretization can handle multigroup

anisotropic scattering problems as well.
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5.4 Discontinuous Media/Source Problem

This test is on a 10cm × 10cm domain, with reflective BC on the left and bottom of the

domain and vacuum BC on the top and right. There are two types of materials as shown in Fig. 5.9:

a source material (green) with σt = 1cm−1 and scattering σs = 0.9cm−1, and a sink material

(purple) with σt = 2cm−1 and σs = 0.1cm−1. The source material is located in 0cm ≤ x, y ≤ 5cm,

and the sink material is elsewhere. Sequences of N × N meshes are used (1-level), as well as 2-

(a) materials (b) refinement region

Figure 5.9: Discontinuous Media/Source Problem: Materials and refinement regions.

level meshes with refinement in the square 4cm ≤ x, y ≤ 6cm. Contours of fine mesh solutions

are shown in Fig. 5.10. We use 30% randomized meshes and for 2-level meshes, randomization of

vertex locations are performed first, then the square region is refined. The S16 quadrature set is

used. The scalar flux is converged to ǫφ = 10−7.
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(a) 1-level (b) 2-level

Figure 5.10: Discontinuous Media/Source Problem: Fine mesh solutions.

5.4.1 Data

We present data for 1-level and 2-level meshes with linear source approximation with our

JM LOQD discretization and SCSB discretization of the high-order problem. We use a diagonal line

from (x, y) = (0cm, 0cm) to (10cm, 10cm) to look at the spatial variation of cell-average scalar fluxes.

In Fig. 5.11, cell-average scalar fluxes along this diagonal line are presented for various refinements

and both the high-order and low-order representations of the scalar flux. Vertices of cells which lie

on this diagonal are not perturbed by randomization so that a line connecting their centers may

be constructed. These QD results are compared to BLD (with DSA acceleration) in Fig. 5.13 and

Fig. 5.14. Spatial convergence results are shown in Fig. 5.12, for the source and sink region-average

scalar fluxes, φsrc and φsink, respectively. The region-average values, differences between successive

meshes, and ratios are shown for 1-level and 2-level meshes in Table 5.12, Table 5.13, Table 5.14,

and Table 5.15.
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Figure 5.11: Discontinuous Media/Source Test: Cell-average scalar fluxes along diagonal line for
the (a) source region and (b) sink region on 30% randomized meshes.
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Table 5.12: Discontinuous Media/Source Problem: Source region-average scalar fluxes on 30%
randomized 1-level meshes.

high-order QD LOQD

N h(cm) φsrch φsrch/2 − φsrch Ratio φsrch φsrch/2 − φsrch Ratio

16 0.625 6.017 -4.02E-1 1.64 6.110 -5.47E-1 1.66

32 0.313 5.856 -1.62E-1 2.49 5.877 -2.32E-1 2.36

64 0.156 5.811 -4.50E-2 3.59 5.817 -6.07E-2 3.83

128 0.078 5.800 -1.04E-2 4.35 5.803 -1.41E-2 4.29

Table 5.13: Discontinuous Media/Source Problem: Source region-average scalar fluxes on 30%
randomized 2-level meshes.

high-order QD LOQD

N h(cm) φsrch φsrch/2 − φsrch Ratio φsrch φsrch/2 − φsrch Ratio

16 0.625 5.990 -3.91E-1 1.76 6.057 -5.29E-1 1.76

32 0.313 5.847 -1.43E-1 2.73 5.864 -1.94E-1 2.73

64 0.156 5.813 -3.43E-2 4.18 5.816 -4.72E-2 4.10

128 0.078 5.806 -7.00E-3 4.89 5.806 -9.84E-3 4.80

Table 5.14: Discontinuous Media/Source Problem: Sink region-average scalar fluxes on 30% ran-
domized 1-level meshes.

high-order QD LOQD

N h(cm) φsinkh φsinkh/2 − φsinkh Ratio φsinkh φsinkh/2 − φsinkh Ratio

16 0.625 8.242E-02 -1.58E-2 1.36 6.825E-02 9.60E-3 1.65

32 0.313 7.621E-02 -6.21E-3 2.55 7.233E-02 4.08E-3 2.36

64 0.156 7.443E-02 -1.78E-3 3.49 7.339E-02 1.07E-3 3.83

128 0.078 7.399E-02 -4.39E-4 4.05 7.364E-02 2.48E-4 4.29

Table 5.15: Discontinuous Media/Source Problem: Sink region-average scalar fluxes on 30% ran-
domized 2-level meshes.

high-order QD LOQD

N h(cm) φsinkh φsinkh/2 − φsinkh Ratio φsinkh φsinkh/2 − φsinkh Ratio

16 0.625 8.036E-02 -1.36E-2 1.80 6.917E-02 9.28E-3 1.76

32 0.313 7.534E-02 -5.03E-3 2.71 7.257E-02 3.40E-3 2.73

64 0.156 7.400E-02 -1.33E-3 3.77 7.340E-02 8.29E-4 4.10

128 0.078 7.370E-02 -3.01E-4 4.44 7.357E-02 1.73E-4 4.80
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Figure 5.12: Discontinuous Media/Source Problem: Relative errors with refinement in (a) source
region and (b) sink region on 30% randomized meshes.
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5.4.2 Analysis

First, this problem exhibits eight orders of magnitude difference between the solution at

(0cm, 0cm) and (10cm, 10cm), and leads to strong ray effects as seen in Fig. 5.10.
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Figure 5.13: Discontinuous Media/Source Problem: Comparison to BLD over entire domain.

Fig. 5.14 shows that in the source region, high-order QD, LOQD, and BLD behave sim-

ilarly. In the strongly attenuating sink region, high-order QD with h performs as well as BLD

with h/2. In the sink region, LOQD behaves very similarly to BLD. The number of transport

iterations for both BLD with DSA and QD were between 6 and 8. All convergence results show

a convergence ratio that increases to 4 (the ratio for second order) and beyond. However, at the

finest h ≈ 0.08cm, the Aitken process uses values from h ≈ 0.16cm and h ≈ 0.32cm so we are not

witnessing asymptotic convergence yet, and still have contributions from O(h3) terms.

The linear scattering source approximation used here leads to approximately 10% lower

errors in the region-average quantities than the flat approximation (not shown) for coarse meshes
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Figure 5.14: Discontinuous Media/Source Problem: Comparison to BLD.

with h > 0.625cm. The advantage disappears for smaller h.
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5.5 Duct Transport Problem

This problem simulates transport of radiation through a duct, as shown in Fig. 5.15. There

is unit incident radiation, ψIN = 1n/cm2·s, on the entire left side. All other boundaries are vacuum,

ψIN = 0. The duct material (green in Fig. 5.15) has σt = 1cm−1 and σs = 0.5cm−1. The wall

material (purple in Fig. 5.15) has σt = 10cm−1 and σs = 1cm−1. The domain is a 16cm × 8cm

rectangle. We examine results on 2N ×N meshes, both single-level and two-level, orthogonal and

randomized by 20% perturbations of vertices. A representative two-level mesh is shown in Fig. 5.15

with refinement in the duct region, extending 0.5cm across the material interfaces. The S12 level

symmetric quadrature set is used. The scalar flux is converged to a tolerance of ǫφ = 10−6.

Figure 5.15: Duct Transport Problem: Material distributions on two-level mesh (32× 16 with duct
refinement).
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(a) Exx

(b) Exy

(c) Eyy

Figure 5.16: Duct Transport Problem: QD Factors Eαβ .
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5.5.1 Data

QD factors are shown in Fig. 5.16 for a 256 × 128 mesh. The scalar flux contours in

Fig. 5.17 for SCSB with source iterations (SI), QD (with SCSB high-order discretization and JM

LOQD discretization), and BLD on orthogonal 128 × 64 meshes. We have used the flat scattering

source for all QD and SCSB results. Results for SCSB and QD on coarse randomized meshes and

BLD on a coarse orthogonal mesh are shown in Fig. 5.18. We examine the region-average scalar

flux in the block of wall from 6cm ≤ x ≤ 10cm and 0cm ≤ y ≤ 4cm, φblock, and the exiting flow

rate of particles F (n/s) on the right side of the wall,

Fout =

∫ 8cm

0cm
Jx(x = 16cm, y) dy .

The φblock results with our QD method are tabulated in Table 5.16. and Table 5.17 for single-

level and two-level meshes, respectively. The Fout results with our QD method are tabulated

in Table 5.19. and Table 5.20 for single-level and two-level meshes, respectively. In tables, the

column “rel. diff.” is the relative difference between results on orthogonal and randomized meshes.

Additionally, we present φblock for BLD and SCSB transport discretizations in Table 5.18 on single-

level meshes and Fout for SCSB on single-level meshes in Table 5.21.

Table 5.16: Duct Transport Problem: QD block region-average scalar flux for single-level meshes.

High-Order φblock LOQD φblock

h(cm) NC Ortho. Rand. rel. diff. Ortho Rand. rel. diff.

1/2 512 2.7856E-04 2.8872E-04 3.583% 1.2536E-04 1.2428E-04 0.860%

1/4 2048 2.0587E-04 2.0284E-04 1.486% 1.4260E-04 1.4523E-04 1.824%

1/8 8192 1.6244E-04 1.6434E-04 1.162% 1.4420E-04 1.4424E-04 0.026%

1/16 32768 1.4637E-04 1.4798E-04 1.093% 1.4205E-04 1.4208E-04 0.021%
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Table 5.17: Duct Transport Problem: QD block region-average scalar flux for two-level meshes.

High-Order φblock LOQD φblock

h∗(cm) NC Ortho. Rand. rel. diff. Ortho Rand. rel. diff.

1/4 1298 2.0587E-04 2.0913E-04 1.571% 1.4260E-04 1.4531E-04 1.881%

1/8 5192 1.6244E-04 1.6428E-04 1.124% 1.4420E-04 1.4553E-04 0.918%

1/16 20768 1.4637E-04 1.4756E-04 0.810% 1.4205E-04 1.4319E-04 0.797%

∗ the smaller mean-cell width on the two-level mesh

Table 5.18: Duct Transport Problem: SCSB and BLD block region-average scalar flux.

SCSB BLD

h(cm) NC Ortho. Rand. rel. diff. Ortho

1/2 512 1.5396E-04 1.5470E-04 0.485% 1.57463E-4

1/4 2048 1.4426E-04 1.4432E-04 0.046% 1.45705E-4

1/8 8192 1.4188E-04 1.4195E-04 0.048% 1.42417E-4

1/16 32768 1.4138E-04 1.4139E-04 0.009% 1.41520E-4

Table 5.19: Duct Transport Problem: QD exiting flow rate for single-level meshes.

High-Order Fout LOQD Fout
h(cm) NC Ortho. Rand. rel. diff. Ortho Rand. rel. diff.

1/2 512 2.8396E-08 2.8303E-08 0.330% 3.0750E-08 3.0863E-08 0.367%

1/4 2048 7.3446E-09 7.3971E-09 0.712% 7.7731E-09 7.8688E-09 1.223%

1/8 8192 2.2051E-09 2.2711E-09 2.948% 2.2580E-09 2.3329E-09 3.264%

1/16 32768 1.2510E-09 1.2796E-09 2.264% 1.2588E-09 1.2856E-09 2.107%

Table 5.20: Duct Transport Problem: QD exiting flow rate for two-level meshes.

High-Order Fout LOQD Fout
h∗(cm) NC Ortho. Rand. rel. diff. Ortho Rand. rel. diff.

1/4 1298 7.3448E-09 7.8631E-09 6.816% 7.7734E-09 8.3276E-09 6.884%

1/8 5192 2.2051E-09 2.3103E-09 4.657% 2.2580E-09 2.3740E-09 5.009%

1/16 20768 1.2510E-09 1.2862E-09 2.775% 1.2588E-09 1.2978E-09 3.046%

∗ the smaller mean-cell width on the two-level mesh

Table 5.21: Duct Transport Problem: SCSB exiting flow rate.

SCSB

h(cm) NC Ortho. Rand. rel. diff.

1/2 512 1.2923E-09 1.2832E-09 0.711%

1/4 2048 1.0056E-09 1.0070E-09 0.146%

1/8 8192 9.7549E-10 9.7588E-10 0.040%

1/16 32768 9.7898E-10 9.7938E-10 0.041%
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(a) SCSB

(b) QD

(c) BLD

Figure 5.17: Duct Transport Problem: Scalar flux contours on 128 × 64 meshes.
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(a) SCSB

(b) QD

(c) BLD

Figure 5.18: Duct Transport Problem: Scalar flux on (coarse) 32 × 16 meshes.
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5.5.2 Analysis

The QD factors Eαβ in Fig. 5.16 show strong variations, including ray effects, in the duct

system. All methods show similar contours up to the first bend in Fig. 5.17. Beyond the first bend,

QD shows larger scalar fluxes than SCSB with SI or BLD. SCSB and QD show nearly identical

attenuation in the wall region above the duct entrance, for a sufficiently fine mesh. With a coarse

mesh, as in Fig. 5.18(c), the combination of strong incident flux plus large absorption cross sections,

σa = σt−σs = 9cm−1 leads to small, negative cell-average scalar fluxes with our JM discretization.

In this problem, the breakdown occurs on randomized meshes only in cells with incident flux on

one side and σah > 2, which leads to approximately an order of magnitude change in the scalar flux

across a cell. However, only the cells in the wall material have this breakdown and this does not

seem to have a dramatic effect on φblock or Fout. A potential remedy is discussed in the summary

of this chapter.

From the perspective of acceleration, in the duct, the scattering ratio c = 0.9, leads to 27

transport iterations with SCSB using source iterations (SI), 7 iterations with QD, and 7 iterations

with BLD (accelerated with DSA) with scalar flux tolerance of ǫφ = 10−6. With our LOQD solver,

the time spent in the low-order solver is a fraction of the time spent in the high-order transport

sweep (an average of 1/8 the time for this problem), so the cost of QD is effectively 7/27 ≈ 26% the

cost of SI. We have used the flat scattering source representation here, because for large gradients,

the linear scattering source can be negative in parts of a cell, and this should be avoided. However,

as it turns out, the linear scattering source representation may be used for this test, but there is

not much advantage in doing so for Fout and φblock—they show negligible difference for linear and

flat scattering representations.
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The region-average scalar fluxes φblock in Table 5.16, show small relative differences be-

tween randomized and orthogonal meshes: about 1% for the high-order QD representation and

about 0.02% for the LOQD representation. On two-level meshes, both high-order QD and LOQD

representations differ on orthogonal and randomized meshes by about 0.8% on the finest meshes.

Two-level meshes in Table 5.17 show significant efficiency gains, with nearly identical φblock to a sin-

gle level mesh with 50% more cells. Compared to the SCSB transport discretization in Table 5.17,

where φblock has almost 4 digits converged, our QD method is less accurate, with 2 digits converged

for the high-order and 3 digits converged for the LOQD method. This is one example where the

LOQD problem yields a more accurate solution than the high-order one. In this quantity, φblock,

the LOQD result is similar to the orthogonal BLD results shown in Table 5.18.

The exiting flow rates Fout, are on the order of 10−9n/s, while the incident particle flow

rate is Fin =
∫ 8
0

∫

2π ψINdΩ dy = 16πn/s, for about 11 orders of magnitude attenuation of the

incident radiation through the duct system. On the last stage of refinement, Fout calculated by QD

method changes by a factor of 2. With SCSB, it is converged to 2 digits. Thus, if the quantity of

interest is the exiting flow rate, it may be useful to consider a framework for pure acceleration.

5.6 Summary

In this chapter, we have performed numerous tests of our QD method, which is composed

of high-order QD discretization via SCSB and LOQD discretization via the JM FV method of

Chapter 2. These tests have been chosen to show the behavior and performance of the method

under a wide range of conditions. A short review of the tests follows.

1. Uniform External Source Test
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We showed second-order convergence of our QD method on randomized meshes in a simple

problem with no scattering. Complicated boundary behavior of E exists in this simple prob-

lem. The LOQD results with E calculated via SCV and SCSB show similar accuracy, less

than the first-order characteristic method, ESC, but overtaking with mesh refinement. The

SCSB method shows remarkable accuracy for this simple problem.

2. Diffusion Limit Test

We showed that our QD method does indeed limit to diffusion as the smallness parameter

ǫ→ 0. The number of transport iterations for the scattering does increase slightly with mesh

randomization.

3. Analytic Transport Test, Revisited

In this analytic test, we showed second-order convergence for the high-order and LOQD

solution in the ℓ2 error norm. Because of the anisotropic external source in this test, the

RHS of LOQD’s first moment equations is nonzero and on some faces negative, which did not

seem to cause any trouble for the discretization. This leads us to believe the discretization

will behave well in multigroup problems with anisotropic scattering, where there are similar

(possibly negative) terms. The high-order solution is more accurate than the LOQD solution

in this test and the linear approximation of the scattering source further improves the accuracy

of the high-order solution by a factor of 5.

4. Discontinuous Media/Source Problem

This problem with reflective boundary conditions showed near second-order numerical con-

vergence for a problem with relatively strong source and sink materials. A patch of adaptive

meshing on a corner improved results on coarse meshes.
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5. Duct Transport Problem

This difficult problem transporting radiation through a duct showed great advantage in using

two-level meshes, with refined cells in the duct. The QD discretization approximated a region-

average scalar flux very well but the exiting flow rate of particles was overapproximated

by factors of approximately 20, 8, 2, 1.2 for h = 1/2, 1/4, 1/8, 1/16cm meshes, respectively,

whereas SCSB with source iterations on the h = 1/16cm mesh was converged to 2 digits.

One potential problem with the LOQD discretization was discovered in the duct trans-

port problem, where the combination of strong attenuation through the wall and coarse meshes

lead to the scalar flux varying an order of magnitude across a single cell. On skewed cells, the

JM discretization breaks down and the cell-average flux becomes negative. On orthogonal cells,

however, where the flow direction is aligned with outward normals of faces, there is no breakdown.

A possible remedy on skewed cells is switching to a different discretization in the cell, perhaps

one with reduced support and designed to handle steep gradients, like the AK discretization [54],

similar to lumping with DFEM methods [80].
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Chapter 6

CONCLUSIONS

We have developed a quasidiffusion (QD) method for solving radiation transport problems

on unstructured quadrilateral meshes in 2D Cartesian geometry which utilizes a new low-order

quasidiffusion (LOQD) discretization via the finite volume (FV) method. In analytic and numeric

tests, our JM discretization, which is based on the cell-centered diffusion discretization in [89],

shows improved accuracy compared to LOQD discretizations from the literature [24] and [54].

Additionally, we have proposed interface conditions for cells with hanging nodes that still allow

cells to be treated as quadrilaterals, thus not introducing additional unknowns into the system. We

have found that efficient iterative solution of the LOQD equations can be achieved with Krylov

methods and preconditioning via incomplete LU factorization with diagonal compensation.

We have exploited the fact that QD allows independent discretizations of the high-order

and low-order problems and have used short characterstics with subcell balances (SCSB) for the

high-order transport discretization. The SCSB transport discretization exhibits robust behavior in

important limits for characteristic transport discretizations, e.g. grazing angles and voids, due to
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the use of polynomial exponential moments and is second-order. Although SCSB is more expensive

than the vertex-based, short characteristics (SCV) method we also developed for use with our

LOQD discretization, an SCV method could not be extended to arbitrary meshes with retention of

the second-order.

We have also developed a linear representation of the isotropic component of the scattering

source based on face-average and cell-average scalar fluxes that is effective in some problems. For

some problems, there is not much gain over the flat representation of the scattering source.

In numerical tests, the resultant QD method (LOQD plus transport discretization) with

linear scattering source representation shows advantage over bilinear discontinuous (BLD) transport

discretizations for coarse meshes.

Future Work

The first major avenue for future work is extension of the methods presented here to

arbitrary meshes in 3D Cartesian geometry. The LOQD discretization we have developed may be

easily extended to 3D polyhedra, like the diffusion discretization [89] from which it was adapted.

The SCSB discretization lends itself to 3D extension in all manners except the procedure for

parabolic interpolation with monotonization, for which an extension of the parabolic interpolant

on 1D linear faces to a paraboloid interpolant on 2D planar faces is not immediately apparent.

Future work should also theoretically address the effect of the new hanging-node interface

conditions. For example, one can compare the discretization of 1) a small 3-cell hanging node

system with the hanging-node interface conditions with 2) the same system with the large cell

treated as a 5-sided polygon and standard interface conditions. This analysis may lead to better
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weights for the weak condition and strong conditions. If it does not, on could also use the high-order

problem to calculate weights for hanging-node interfaces that force the low-order discretization to

redistribute scalar flux and currents similarly to the distribution in the high-order problem.

The other major avenue for future work is in preconditioning the LOQD system. The

cell-local discretization involving unknowns on cells and faces, plus interface conditions lends itself

to a block-like structure of the LOQD matrix system, we call the cell-based structure, that has

been solved effectively with BiCGstab and ILUD preconditioning. However, other preconditioners

should be investigated: For example, approximate inverse and algebraic multigrid preconditioning

should be tested.
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Appendix A

Derivation of a Subcell Balance

Characteristic Method2

A.1 Polynomial Exponential Moments

The basic goal of using polynomial exponential moments, PM, is to ease construction

of subcell characteristic transport schemes by abstracting the calculation of difficult integrals. All

PM are smooth functions of their arguments and bounded by [0, 1]. For example, they allow voids

(σ = 0) to be treated implicitly. Even more importantly, as the grid is refined, one will encounter

many subcells with small dimensions in the direction of particle travel and if the case is not handled

appropriately, one may see decreased accuracy as roundoff errors overwhelm the solution, or even

lack of convergence in the extreme case.
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A.1.1 1D Polynomial Exponential Moments

To derive the PM, let us consider the 1D polynomial exponential moment function,

defined as

PMn(x)
def
=

∫ 1

0
dt tn e−xt. (A.1)

The parameter x is an optical thickness of sorts, usually something like x = σ∆s
sin θ . Note that

these polynomial exponential moment functions closely resemble Miller and Mathews exponential

moments functions [69],

Mn(x) =

∫ 1

0
dt (1 − t)n e−xt.

Much of this work is based on their descriptions, however we find PM more basic—one can represent

Mn(x) as a sum of PMn(x) but the converse is more difficult. Note that the polynomial exponential

moments are also closely related to the gamma function, Γ. The PM integral has a standard

recursive solution from integration by parts [60],

Standard Forward Recursion, stable for x ≥ n

PMn(x) =



















1−e−x

x n = 0,

nPMn−1(x)−e−x

x n > 0.

(A.2)

However, such a forward recursion is only stable for x ≥ n, otherwise one will see the

leading n term grow without bound. As long as one is interested in lower-order moments, n < 5 or

so, one can probably tolerate the introduction of error using the forward recursion. However, when

doing multi-dimensional polynomial moments, or considering curved faces of subcells, one could
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easily need moments of n ≥ 5 for a second- or third- order method. The solution, as shown in [69]

is to use backward recursion starting with the highest moment needed N ,

Standard Backward Recursion, stable for x ≤ n+ 1

PMn(x) =

{ Γ(1+n , 0 , x)
xn+1 n = N,

xPMn+1(x)+e−x

n+1 n < N,

(A.3)

where Γ(a, z0, z1) is the generalized incomplete gamma function. Note that the stability

regions of forward and backward recursion overlap. Because forward recursion is cheaper we prefer

to use it in the region of overlap. Finally, in the case of small x, neither solution is appropriate as

they have x in denominators. Thus we must write a series expansion for x < 1,

e−xt =

∞
∑

k=0

(−xt)k
k!

,

substitution into the integral expression yields,

Near Zero Expansion, stable for x < 1

PMn(x) =
∞
∑

k=0

1

k + n+ 1

(−x)k
k!

. (A.4)

This is an alternating sign series and may be truncated safely—the sum of all truncated

terms is bounded by the absolute value of the last term used. Thus based on n and x, we choose
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the evaluation method for the polynomial exponential moment: 1) Standard Forward Recursion if

x ≥ n and x ≥ xmin 2) Standard Backward Recursion xmin ≤ x ≤ n or 3) Near Zero Expansion if

x < xmin. For stability, xmin < 1, however it is advantageous to choose xmin a bit smaller so that

we require fewer terms to converge our series. For example, the choice of xmin = 1/2 leads to a

worst case scenario of 2−k

(k+1)!—an error magnitude of 10−16 requires 14 terms.

n10

x ∞

series expansion

backward recursion

foward recursion

n + 1xmin

Figure A.1: Evaluation methods for the exponential moment functions, PMn(x). Colored blocks
indicate the method used. Arrows indicate the full stability regions.

A.1.2 2D Polynomial Exponential Moments

Multi-dimensional polynomial moments build on lower dimensional ones. In 2D, we have

PMmn(x,B(t))
def
=

∫ 1

0
dt tm

∫ B(t)

0
ds sn e−xs. (A.5)
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The upper limit of the inner s integral is allowed to depend on t— we consider only linear functions

but it is fairly straightforward to extend to any polynomial of t. The upper limit is actually required

to be

B(t) = B1 +Btt, B1, Bt ≥ 0, B(t) ≤ 1 ∀t.

To arrive at expressions for PMmn(x,B), the basic concept is as follows: 1) derive a recursive

relationship for the innermost integral for non-small x, 2) evaluate the needed powers of B(t) and

then 3) apply definitions of PMm to the remaining terms. Finally, a near-zero expansion case must

be derived in the case that x is small.
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Figure A.2: A quadrilateral divided into 3 subcells.

A.2 Subcell Balances

The characteristic equation for an angular dependent subcell (“slice”) in 2D XY geometry

is

ψ(s, t) = ψ(smin(t), t)e
−σt[s−smin(t)]/ sin θ +

1

sin θ

∫ s

smin(t)
ds′ q(s′, t) e−σt[s−s′]/ sin θ , (A.6)

for t ∈ [tmin, tmax] ,

for s ∈ [smin(t), smax(t)] .

given in terms of the (s, t) coordinates. The s-axis is positive in the direction ~Ω = (Ωx,Ωy,Ωz)
t,

projected onto the xy-plane. The t-axis is a clockwise rotation of the s-axis.

~es = (Ωx,Ωy)
t sin θ

~et = (Ωy,−Ωx)
t sin θ
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In each slice, t ranges from tmin to tmax but the incoming and outgoing faces are not necessarily

aligned with the t-axis—that is smin = smin(t) and smax = smax(t). We know incoming values

given at smin(t),

ψin(t)
def
= ψ(smin(t), t).

A.2.1 Transformation of Integral Bounds

Let the equation for a subcell consist of two components, ψ(s, t) = ψE(s, t) + ψS(s, t),

corresponding to the exponential term and the source term [52], respectively, where

ψE(s, t) = ψ(smin(t), t)e
−σt[s−smin(t)]/ sin θ, (A.7)

ψS(s, t) =
1

sin θ

∫ s

smin(t)
ds′ q(s′, t) e−σt[s−s′]/ sin θ . (A.8)

We require application of the following integrations to our E- and S-components:

ψ̄out =
1

∆t

∫ t2

t1

dt ψ(smax(t), t), (A.9)

¯̄ψ =
1

∆s̄∆t

∫ t2

t1

dt

∫ smax(t)

smin(t)
ds ψ(s, t), (A.10)

where ∆s̄ = (∆s1 + ∆s2)/2. For the contributions to the outgoing, face-average angular flux, we

get integrals of the form

ψ̄Eout =
1

∆t

∫ t2

t1

dt ψin(t)e
−

σt
sin θ

[smax(t)−smin(t)], (A.11)

ψ̄Sout =
1

∆t

∫ t2

t1

dt
1

sin θ

∫ smax(t)

smin(t)
ds q(s, t) e−

σt
sin θ

[smax(t)−s] . (A.12)

For the contributions to the interior, cell-average angular flux, we get integrals of the form

¯̄ψE =
1

∆s̄∆t

∫ t2

t1

dt

∫ smax(t)

smin(t)
ds ψin(t)e

−
σt

sin θ
[s−smin(t)], (A.13)

¯̄ψS =
1

∆s̄∆t

∫ t2

t1

dt

∫ smax(t)

smin(t)
ds

1

sin θ

∫ s

smin(t)
ds′ q(s′, t) e−

σt
sin θ

[s−s′] . (A.14)
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In order to use the polynomial exponential moment (PM) functions, which are defined for all x ≥ 0

of exp[−x], we transform our integrals according to

∫ t2

t1

• dt→
∫ 1

0
• dt̃

and
∫ smax(t)

smin(t)
• ds→

∫ B(t̃)

0
• ds̃.

Also, for convergence of PM for small arguments of x, it is required that both B1 and Bt be

positive, 0 ≤ B1 ≤ 1 and 0 ≤ Bt ≤ 1. This leads to two cases, based on the length of the left and

right sides of the subcell: one in which ∆s2 ≥ ∆s1, and one for the converse. We present only the

former below.

A.2.2 Subcell Case 1, ∆s2 ≥ ∆s1

First we concern ourselves with 1D terms that depend only on t, then we consider 2D

terms.

A.2.2.1 1D Terms

We apply the following transformation: t̃ = (t − t1)/∆t, which leads to the outgoing

E-component contribution, ψ̄Eout of Eq. (A.11),

ψ̄Eout =

∫ 1

0
dt̃ ψin(t) e−x B(t̃),
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where x = σt∆s2/ sin θ and ψin(t) = at2 + bt+ c. The function B(t̃) is given by

B(t̃) =
∆s(t̃)

∆s2
= B1 +Btt̃ (A.15)

B1 =
∆s1
∆s2

, (A.16)

Bt =
∆s2 − ∆s1

∆s2
, (A.17)

where we have used the distance between incoming and outgoing edges

∆s(t̃) = ∆s1 + (∆s2 − ∆s1)t̃,

given now in terms of the integration parameter t̃ ∈ [0, 1]. Therefore, at the left side, t̃ = 0 and the

distance is ∆s1. At the right side, t̃ = 1 and the distance is ∆s2. The distance ∆s(t̃) varies linearly

because the edges are linear. Because ∆s2 ≥ ∆s1, 0 ≤ Bt ≤ 1 and 0 ≤ B1 ≤ 1—this means these

transformations will lead to stable expressions for polynomial moments of the exponential for all x.

Finally, substituting t = t1 + ∆t t̃ into our polynomial, ψin(t1 + ∆t t̃) = a[t1 + ∆t t̃]2 +

b[t1 + ∆t t̃] + c, we fully specify the E-component of the outgoing angular flux,

ψ̄Eout = e−xB1

(

[at21 + b t1 + c] PM0(xBt)+

[2a∆t t1 + b∆t] PM1(xBt)+

[a∆t2] PM2(xBt)
)

.

(A.18)

Now, for the S-component of the outgoing angular flux, ψ̄Sout of Eq. (A.12), we choose the

same transformation of t and the following for s: s̃ = (smax(t̃) − s)/∆s2, where

smax(t̃) = smax,1 + ∆smaxt̃,
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and ∆smax = smax,2 − smax,1. This leads to

ψ̄Sout =
∆s2
∆s̄

C

∫ 1

0
dt̃

∫ B(t̃)

0
ds̃ q(s, t) e−x s̃ ,

where C = 1
sin θ and q(s, t) = q1 + qss+ qtt. Now substituting t = t1 + ∆t t̃ and s = smax(t̃)−∆s2s̃

into our polynomial, q(smax(t̃) − ∆s2s̃ , t1 + ∆t t̃) = q1 + qs[smax(t̃) − ∆s2s̃] + qt[t1 + ∆t t̃], we

determine the S-component of the outgoing average angular flux as

ψ̄Sout = 2

1+
∆s1
∆s2

(

[q1 + qssmax,1 + qtt1] PM00(x,B(t̃);x0, C)+

[qs∆smax + qt∆t] PM10(x,B(t̃);x0, C)−

[qs∆s2] PM01(x,B(t̃);x0, C)
)

,

(A.19)

where C = 1
sin θ and x0 = x/C = σt∆s2 are additional parameters that must be passed to

the polynomial exponential moment evaluation routines to properly handle sin θ → 0.

A.2.2.2 2D Terms

Now we turn to the more challenging case of contributions of E- and S-components to the

cell-average angular flux. We apply the following transformation: t̃ = (t − t1)/∆t and s̃ = (s −

smin(t̃))/∆s2, which leads to the interior, cell-average E-component contribution, ¯̄ψE of Eq. (A.13),

¯̄ψE =
∆s2
∆s̄

∫ 1

0
dt̃ ψin(t)

∫ B(t̃)

0
ds̃ e−x s̃.

Substituting ψin(t), we arrive at the following expression for the contribution of the E-component

to the cell-average angular flux,
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¯̄ψE = 2

1+
∆s1
∆s2

(

[at21 + bt1 + c] PM00(x,B(t̃);x0, C)+

[2a∆t t1 + b∆t] PM10(x,B(t̃);x0, C)+

[a∆t2] PM20(x,B(t̃);x0, C)
)

.

(A.20)

Now, using our above transformations in Eq. (A.14), t̃ = (t − t1)/∆t and s̃ = (s −

smin(t̃))/∆s2, along with s̃′ = s̃ + (smin(t̃) − s′)/∆s2, we get the following expression for the

interior, cell-average S-component contribution, ¯̄ψS of Eq. (A.14),

¯̄ψS =
∆s22
∆s̄

C

∫ 1

0
dt̃

∫ B(t̃)

0
ds̃

∫ s̃

0
ds̃′ q(s′, t) e−x s̃

′

, (A.21)

where the source has been written untransformed as q(s′, t), for brevity—the expressions for s′ and

t are s′ = s̃∆s2 + smin(t̃) − s̃′∆s2 and t = t1 + t̃∆t. Solving the above Eq. (A.21) in terms of

general exponential moments requires three dimensional moments functions, PMℓmn, whereas all

other moments have required two- and one- dimensional ones, PMmn and PMn. Thus we choose

to solve the innermost integral over s̃′, with appropriate series expansion for small x and express

the result in terms of PMmn and PMn. It is also convenient now to introduce the polynomial

moments Pmn,

Pmn =

∫ 1

0
dt̃ t̃m

∫ B(t̃)

0
ds̃s̃n (A.22)

=
1

n+ 1

n+1
∑

k=0

(n+ 1)!

(n+ 1 − k)! k!

Bk
t B

n+1−k
1

k +m+ 1
.

Finally, we consider the constant, linear in s, and linear in t parts of the integrand of Eq. (A.21),

q, separately. Thus we will present the ¯̄ψS in parts due to each of the components of the linear

source,

203



www.manaraa.com

¯̄ψS = q1
¯̄ψS1 + qs

¯̄ψSs + qt
¯̄ψSt . (A.23)

A.2.2.3 2D Terms with x not too Small

For the case that x not small, we have the following expression for the constant q1 part,

¯̄ψS1 =
q1
σt

(

1 − f2PM00(x,B(t̃))
)

, (A.24)

where f2 is a factor that comes up often, defined as the ratio ∆s2/∆s̄, or

f2 =
∆s2
∆s̄

=
2

1 + ∆s1
∆s2

.

Note that in Eq. (A.24) the exponential moment PM00(x,B(t̃)), the x0 and C terms are not

needed—this is because the 1
sin θ term cancels after the evaluation of the inner s̃′ integral, so C = 1

and x0 = x. This equation is shown to fulfill a simple asymptotic: in a homogeneous, infinite

media, as x → ∞, PM00(x,B(t̃)) = 0, which leads to ψ(s, t) = q1
σt

. The qt part is also easy to

evaluate,

¯̄ψSt = qt
σt
f2

(

[B1t1 +B1∆t/2 +Btt1/2 + ∆tBt/3]−

[t1] PM00(x,B(t̃))−

[∆t] PM10(x,B(t̃))
)

.

(A.25)
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The algebra for the qs part is very tedious, as a result, we have

¯̄ψSs = qs
σt
f2

(

[smin,1]
[

P00 − PM00(x,B(t̃))
]

+

[smin,t]
[

P10 − PM10(x,B(t̃))
]

+

[∆s2] P01−

[ sin θσt
]

[

P00 − PM00(x,B(t̃))
]

)

.

(A.26)

Note that, surprisingly, this integral expression does not contain PM01, which comes from

integrations over s. In fact it does, but there are two terms which exactly cancel.

A.2.2.4 2D Terms with Small x

For the small x case, substituting the expansion

exp(−x s̃′) = 1 − xs̃′ +
(xs̃′)2

2
− ... =

∞
∑

m=0

(−xs̃′)m
m!

into Eq. (A.21) leads to a different class of expressions that never experience division by x. Because

of the form of the inner integral in Eq. (A.21), general moments of t̃i and s̃j require application of

the multinomial theorem, which is unwieldy. Thus we choose to simply evaluate our expressions

for the 3 cases we need. The close-to-zero approximations are denoted with a triple-asterisk.

¯̄ψS∗∗∗1 = q1
∆s2
sin θ

f2

∞
∑

m=0

(−x)m C1(m+ 2) (A.27)

where

C1(N) =
N
∑

ℓ=0

(−Bt)ℓ
(N − ℓ)! ℓ!

[

1

ℓ+ 1

]

.
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Note, the expression above only depends on Bt because we used the fact that B1 = 1−Bt

before expanding a binomial expression. The ¯̄ψS∗∗∗t term is easy enough, it introduces a (t1 + ∆tt̃)

term into the integral, which leads to the expression

¯̄ψS∗∗∗t = qt
∆s2
sin θ

f2

∞
∑

m=0

(−x)m Ct(m+ 2) (A.28)

where

Ct(N) =
N
∑

ℓ=0

(−Bt)ℓ
(N − ℓ)! ℓ!

[

t1 + t1ℓ+ t2
(ℓ+ 1)(ℓ+ 2)

]

.

The ¯̄ψS∗∗∗s term involves a lot of algebra, it introduces a (t1 + ∆tt̃) term into the integral,

which leads to the expression

¯̄ψS∗∗∗s = qs
∆s2
sin θ

f2

∞
∑

m=0

(−x)m Cs(m+ 2) (A.29)

where

Cs(N) =
N
∑

ℓ=0

(−Bt)ℓ
1

(N − ℓ)! ℓ!

[

smin,1 + ℓsmin,1 + smin,2
(ℓ+ 1)(ℓ+ 2)

]

+

N+1
∑

ℓ=0

(−Bt)ℓ
1

(N + 1 − ℓ)! ℓ!

[

∆s2
ℓ+ 1

]

.

In Fig. A.3 we see the convergence of a particular small x = σ∆s
sin θ expansion as a function

of σ. It shows the series converges as predicted and shows motivation for choosing the maximum

x for which the series will be used, xmin, somewhat lower than the theoretically allowed xmin =

0.99999999999..., to allow for a more rapidly convergent series.
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Figure A.3: Using the small x expansion, values of ¯̄ψS∗∗∗ are shown as a function of total cross
section, σ, for a varying number of terms in the expansion. For the case shown, sin θ and ∆s were
such that requiring x = ∆sσ

sin θ < 1, leads to σ < 3
4 . With ten terms, one can see the expansion

is fairly accurate around σ = 3
4 (a vertical gray line) and may appear convergent beyond that.

However, as more terms are included, one observes the divergence for σ > 3
4 .

207



www.manaraa.com

Appendix B

Parabolic Interpolant with

Monotonization

In the case of no extremum, the incoming flux is approximated as a quadratic on the face

ψ(x) = ax2 + bx+ c, x ∈ [0, h]. Error of such interpolating polynomials can be given in Lagrangian

form as

R(x) = ψ(x) − ψex(x) =
dn+1ψex

dxn+1

∣

∣

∣

∣

ξ

n
∏

i=0

(x− xi)

(n+ 1)!
,

where xi are the interpolation nodes and ξ ∈ [0, h]. The Lagrangian form is useful because it

contains no higher-order derivatives—the disadvantage of using it is the value ξ is not known,

but it is very useful for showing the order of local truncation error. In our case, the parabola is

constructed from

• left and right point values,

ψ(0) = ψ1,

ψ(h) = ψ2,
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• and average value,

1

h

∫ h

0
ψ(x)dx = ψ̄,

known from previous cells in the sweep or from boundary conditions. The parabolic coefficients are

thus given by

a =
3ψ1 + 3ψ2 − 6ψ̄

h2
, (B.1)

b =
6ψ̄ − 4ψ1 − 2ψ2

h
, (B.2)

c = ψ1. (B.3)

If ψ1, ψ2, and ψ̄ are known from previous cells in the sweep, there is error associated with those

terms—otherwise, if given by boundary conditions, the terms may be considered exact. In order

that the Lagrangian error apply, we must assume the 3 interpolation nodes, x0 = 0, x1 = x(ψ̄),

x2 = h. For linear functions, x1 = h
2 . For quadratic functions, we choose to represent x1 = η h2 with

η ∈ [0, 2] by mean-value theorem and known monotonicity of the exact solution.

B.1 Local Truncation Error in Point Values

Now we consider the error in the incoming quadratic ψ(x) on the subcell, denoted with

subscript s. The incoming edge of the subcell goes from x = as to x = bs with length hs = bs−as. It

is also convenient to use the normalized coordinates denoted with a tilde, x̃ = x/h. Using x̃ ∈ [0, 1]

results in local error function for an incoming edge of a subcell,

Rs(x̃) = −
(

1

2
Z(η − 2x̃)(x̃− 1)x̃

)

h3, x̃ ∈ [ãs, b̃s].
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The term Z is the derivative term from the Lagrange form of the error for a second-order polynomial

(parabolic) interpolant,

Z =
d3ψex

dx3

∣

∣

∣

∣

ξ

, ξ ∈ [0, h].

Thus the point values obtained from interpolant ψ(x) is O(h3) if Z is bounded on the interval. It is

also exact at the endpoints, x̃ = 0, x̃ = 1, as well as where the function attains the average value,

x̃ = η/2.

B.2 Local Truncation Error in Average Values

By integration, the interpolation error in the average R̄s = 1
hs

∫ bs
as
ψ(x)−ψex(x)dx is given

by

R̄s =
Zr3s
12

(η − 1)h3, η ∈ [0, 2].

The term r is the ratio of the subcell incoming edge length to the face edge length, rs =

hs/h. Thus the average value obtained from the interpolant is O(h3) if Z is bounded on the interval.

Naturally, the average value is exact if ψex(x) is a quadratic (or lesser polynomial), due to Z = 0.

The average value is also exact if η = 1, however, that only occurs for linear ψex(x), which will

result in Z = 0 anyway.

B.3 Monotonization

The monotonization is based on a nonlinear selection procedure based known endpoint

values ψ1 and ψ2, as well as average, ψ̄. First, define the maximum and minimum values allowed,

ψmax = max(ψ1, ψ2) and ψmin = min(ψ1, ψ2). If ψ̄ > ψmax or ψ̄ < ψmin then the solution cannot
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be monotonic and we use the following representations,

ψ(x) =















ψmin + 6 ψ̄−ψmin

h + 6ψmin−ψ̄
h2 , if ψ̄ < ψmin,

ψmax + 6 ψ̄−ψmax

h + 6ψmax−ψ̄
h2 , if ψ̄ > ψmax.

(B.4)

Otherwise, we have a monotonic representation with ψ1 ≤ ψ̄ ≤ ψ2. First define the parameters,

x∗L =
3ψ2 − 3ψ̄

y2 − y1
h, (B.5)

x∗R =
2ψ1 + ψ2 − 3ψ̄

ψ2 − ψ1
h.

If x∗L is contained in the interval, 0 ≤ x∗L ≤ h, then we use the the piecewise representation that is

constant on the right,

ψ(x) =















(ψ1−ψ2

x∗
L

2 )x2 + (2ψ2−ψ1

x∗
L

)x+ ψ1 , 0 ≤ x ≤ x∗L,

ψ2 , x∗L < x ≤ h.

(B.6)

If x∗R is contained in the interval, 0 ≤ x∗R ≤ h, then we use the piecewise representation that is

constant on the left,

ψ(x) =















ψ1 , 0 ≤ x ≤ x∗R,

[

ψ2−ψ1

(h−x∗
R

)2

]

x2 +
[

2x∗R
ψ1−ψ2

(h−x∗
R

)2

]

x+
[

ψ1 + x∗R
2 ψ2−ψ1

(h−x∗
R

)2

]

, x∗R < x ≤ h.

(B.7)

Otherwise, we do not have an extremum on the interval and we can use the simple parabolic

ψ(x) = ax2 + bx+ c, with coefficients given in Eq. (B.1).
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